|   | 
Details
   web
Records
Author Wild, W.; Kardashev, N. S.; Likhachev, S. F.; Babakin, N. G.; Arkhipov, V. Y.; Vinogradov, I. S.; Andreyanov, V. V.; Fedorchuk, S. D.; Myshonkova, N. V.; Alexsandrov, Y. A.; Novokov, I. D.; Goltsman, G. N.; Cherepaschuk, A. M.; Shustov, B. M.; Vystavkin, A. N.; Koshelets, V. P.; Vdovin, V.F.; de Graauw, T.; Helmich, F.; vd Tak, F.; Shipman, R.; Baryshev, A.; Gao, J. R.; Khosropanah, P.; Roelfsema, P.; Barthel, P.; Spaans, M.; Mendez, M.; Klapwijk, T.; Israel, F.; Hogerheijde, M.; vd Werf, P.; Cernicharo, J.; Martin-Pintado, J.; Planesas, P.; Gallego, J. D.; Beaudin, G.; Krieg, J. M.; Gerin, M.; Pagani, L.; Saraceno, P.; Di Giorgio, A. M.; Cerulli, R.; Orfei, R.; Spinoglio, L.; Piazzo, L.; Liseau, R.; Belitsky, V.; Cherednichenko, S.; Poglitsch, A.; Raab, W.; Guesten, R.; Klein, B.; Stutzki, J.; Honingh, N.; Benz, A.; Murphy, A.; Trappe, N.; Räisänen, A.
Title Millimetron—a large Russian-European submillimeter space observatory Type Journal Article
Year (up) 2009 Publication Exp. Astron. Abbreviated Journal Exp. Astron.
Volume 23 Issue 1 Pages 221-244
Keywords Millimetron space observatory, VLBI, very long baseline interferometry
Abstract Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0922-6435 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1402
Permanent link to this record
 

 
Author Goltsman, G. N.
Title Ultrafast nanowire superconducting single-photon detector with photon number resolving capability Type Conference Article
Year (up) 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7236 Issue Pages 72360D (1 to 11)
Keywords PNR NbN SSPD, SNSPD, superconducting single-photon detectors, photon number resolving detectors, ultrathin NbN films
Abstract In this paper we present a review of the state-of-the-art superconducting single-photon detector (SSPD), its characterization and applications. We also present here the next step in the development of SSPD, i.e. photon-number resolving SSPD which simultaneously features GHz counting rate. We have demonstrated resolution up to 4 photons with quantum efficiency of 2.5% and 300 ps response pulse duration providing very short dead time.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Arakawa, Y.; Sasaki, M.; Sotobayashi, H.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1403
Permanent link to this record
 

 
Author Tikhonov, V. V.; Boyarskii, D. A.; Polyakova, O. N.; Dzardanov, A. L.; Goltsman, G. N.
Title Radiophysical and dielectric properties of ore minerals in 12--145 GHz frequency range Type Journal Article
Year (up) 2010 Publication PIER B Abbreviated Journal PIER B
Volume 25 Issue Pages 349-367
Keywords complex permittivity, ore minerals
Abstract The paper discusses a retrieval technique of complex permittivity of ore minerals in frequency ranges of 12--38 GHz and 77--145 GHz. The method is based on measuring frequency dependencies of transmissivity and reflectivity of plate-parallel mineral samples. In the 12--38 GHz range, the measurements were conducted using a panoramic standing wave ratio and attenuation meter. In the 77--145 GHz range, frequency dependencies of transmissivity and reflectivity were obtained using millimeter-band spectrometer with backward-wave oscillators. The real and imaginary parts of complex permittivity of a mineral were determined solving an equation system for frequency dependencies of transmissivity and reflectivity of an absorbing layer located between two dielectric media. In the course of the work, minerals that are primary ores in iron, zinc, copper and titanium mining were investigated: magnetite, hematite, sphalerite, chalcopyrite, pyrite, and ilmenite.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 639
Permanent link to this record
 

 
Author Korneev, A.; Finkel, M.; Maslennikov, S.; Korneeva, Yu.; Florya, I.; Tarkhov, M.; Elezov, M.; Ryabchun, S.; Tretyakov, I.; Isupova, A.; Voronov, B.; Goltsman, G.
Title Superconducting NbN terahertz detectors and infrared photon counters Type Journal Article
Year (up) 2010 Publication Вестник НГУ. Серия: физ. Abbreviated Journal Вестник НГУ. Серия: физ.
Volume 5 Issue 4 Pages 68-72
Keywords HEB; HEB mixer
Abstract We present our recent achievements in the development of sensitive and ultrafast thin-film superconducting sensors: hot-electron bolometers (HEB), HEB-mixers for terahertz range and infrared single-photon counters. These sensors have already demonstrated a performance that makes them devices-of-choice for many terahertz and optical applications. Keywords: Hot electron bolometer mixers, infrared single-photon detectors, superconducting device fabrication, superconducting NbN films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1818-7994 ISBN Medium
Area Expedition Conference
Notes УДК 538.9 Approved no
Call Number RPLAB @ gujma @ Serial 708
Permanent link to this record
 

 
Author Palma, F.; Teppe, F.; Fatimy, A. E.; Green, R.; Xu, J.; Vachontin, Y.; Tredicucci, A.; Goltsman, G.; Knap, W.
Title THz communication system based on a THz quantum cascade laser and a hot electron bolometer Type Conference Article
Year (up) 2010 Publication 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves Abbreviated Journal 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves
Volume Issue Pages 11623798 (1 to 2)
Keywords QCL, HEB detector
Abstract We present the experimental study of the direct emission – detection system based on the THz Quantum Cascade Laser as a source and Hot Electron Bolometer (HEB) detector – in view of its application as an optical communication system. We show that the system can efficiently transmit the QCL Terahertz pulses. We estimate the maximal modulation speed of the system to be about several GHz and show that it is limited only by the QCL pulse power supply, detector amplifier and connection line/wires parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1391
Permanent link to this record