|   | 
Details
   web
Records
Author Smirnov, Konstantin; Vachtomin, Yury; Divochiy, Alexander; Antipov, Andrey; Goltsman, Gregory
Title Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers Type Journal Article
Year 2015 Publication Appl. Phys. Express Abbreviated Journal Appl. Phys. Express
Volume 8 Issue 2 Pages 022501 (1 to 4)
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1882-0778 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ smirnov2015dependence Serial 1049
Permanent link to this record
 

 
Author Bandurin, Denis; Svintsov, Dmitry; Gayduchenko, Igor; Xu, Shuigang; Principi, Alessandro; Moskotin, Maksim; Tretyakov, Ivan; Yagodkin, Denis; Zhukov, Sergey; Taniguchi, Takashi; Watanabe, Kenji; Grigorieva, Irina; Polini, Marco; Goltsman, Gregory; Geim, Andre; Fedorov, Georgy
Title Resonant terahertz photoresponse and superlattice plasmons in graphene field-effect transistors Type Abstract
Year 2019 Publication APS March Meeting Abbreviated Journal APS March Meeting
Volume Issue Pages F14.015
Keywords (up)
Abstract Plasmons, collective oscillations of electron systems, can couple light and electric current, and thus can be used to create compact photodetectors, radiation mixers, and spectrometers. Despite the effort, it has proven challenging to implement plasmonic devices operating at THz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically-tunable plasmons. In this talk, we will demonstrate plasmon-assisted resonant detection of THz radiation by antenna-coupled graphene FETs that act as both rectifying elements and plasmonic Fabry-Perot cavities amplifying the photoresponse. We will show that by varying the plasmon velocity using gate voltage, our detectors can be tuned between multiple resonant modes, a functionality that we apply to measure plasmons' wavelength and lifetime in graphene as well as to probe collective modes in its moire minibands. Our approach offers a convenient tool for further plasmonic research that is often difficult under non-ambient conditions and promises a viable route for various THz applications. We acknowledge Leverhulme Trust, Russian Science Foundation Grants N18-72-00234 and 17-72-30036, Russian Foundation for Basic Research No. 18-57-06001 and 16-29-03402.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1290
Permanent link to this record
 

 
Author Goltsman, Gregory N.
Title Development and applications of terahertz hot electron bolometers Type Abstract
Year 2021 Publication 1st Moscow Int. Conf. on Submillimeter and Millimeter Astronomy: Objectives and Instruments Abbreviated Journal 1st Moscow Int. Conf. on Submillimeter and Millimeter Astronomy: Objectives and Instruments
Volume Issue Pages
Keywords (up)
Abstract The development of techniques and technologies for the deposition of ultrathin superconducting films, the creation of superconducting structures on a nanometer scale is the basis of significant progress in the field of superconducting receiving systems. Ultrathin NbN films are the basis for a wide range of record-breaking hot electron devices: direct and heterodyne terahertz detectors. Terahertz receivers are especially in demand in high-resolution spectroscopy for astronomical, atmospheric, and medical research. HEB receivers are widely used in terahertz radio astronomy. For example, the Dutch SRON Institute is preparing a project for the GUSTO hot air balloon telescope with a HEB mixer array at 1.4 THz and 1.9 THz. A 5-meter Chinese terahertz telescope DATE5 with HEB mixers at 1.4 THz is installed at the South Pole. The Stratospheric Observatory (SOFIA) uses HEB mixer matrices in the GREAT instrument operating in the 1.2 – 4.7 THz range. It is planned to implement the international project Origins Space Telescope (OST) in the far infrared region based on HEB receivers. The Japanese project Smiles-2 will allow measurements at 1.8 THz in the upper layers of the stratosphere and mesosphere. The development of the Millimetron space observatory continues in Russia.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference First Moscow International Conference on Submillimeter and Millimeter Astronomy: Objectives and Instruments, Astro Space Center, Moscow, 12-16 April 2021, id. 2
Notes Downloaded from https://millimetron.ru/conference_2021/Goltsman.pdf; Author: Sergey; Last modification: 2021-04-14 Approved no
Call Number Serial 1771
Permanent link to this record
 

 
Author Elmanov, Ilia; Elmanova, Anna; Kovalyuk, Vadim; An, Pavel; Goltsman, Gregory
Title Silicon nitride photonic crystal cavity coupled with NV-centers in nanodiamonds Type Conference Article
Year 2020 Publication Proc. 32-nd EMSS Abbreviated Journal Proc. 32-nd EMSS
Volume Issue Pages 344-348
Keywords (up)
Abstract The development of integrated quantum photonics requires a high efficient excitation and coupling of a single photon source with on-chip devices. In this paper, we show our results of modelling for high-Q photonic crystal cavity, optimized for zero phonon line emission of NV-centers in nanodiamonds. Modelling was performed for the silicon nitride platform and obtained a quality factor equals to 6136 at 637 nm wavelength.
Address NV-centers, nanodiamonds
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2724-0029 ISBN 978-88-85741-44-7 Medium
Area Expedition Conference 32nd European Modeling & Simulation Symposium
Notes Approved no
Call Number Serial 1840
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Paine, Scott; Lobanov, Yury; Blundell, Raymond; Goltsman, Gregory
Title Temperature resolution of an HEB receiver at 810 GHz Type Journal Article
Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 19 Issue 3 Pages 293-296
Keywords (up) HEB mixer
Abstract We present the results of direct measurements of the temperature resolution of an HEB receiver operating at 810 GHz, in both continuum and spectroscopic modes. In the continuum mode, the input of the receiver was switched between black bodies with different physical temperatures. With a system noise temperature of around 1100 K, the receiver was able to resolve loads which differed in temperature by about 1 K over an integration time of 5 seconds. This resolution is significantly worse than the value of 0.07 K given by the radiometer equation. In the spectroscopic mode, a gas cell filled with carbonyl sulphide (OCS) gas was used and the emission line at 813.3537060 GHz was measured using the receiver in conjunction with a digital spectrometer. From the observed spectra, we determined that the measurement uncertainty of the equivalent emission temperature was 2.8 K for an integration time of 0.25 seconds and a spectral resolution of 12 MHz, compared to a 1.4 K temperature resolution given by the radiometer equation. This relative improvement is due to the fact that at short integration times the contribution from 1/f noise and drift are less dominant. In both modes, the temperature resolution was improved by about 40% with the use of a feedback loop which adjusted the level of an injected microwave radiation to maintain a constant operating current of the HEB mixer. This stabilization scheme has proved to be very effective to keep the temperature resolution of the HEB receiver to close to the theoretical value given by the radiometer equation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 636
Permanent link to this record