toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Smirnov, Konstantin; Vachtomin, Yury; Divochiy, Alexander; Antipov, Andrey; Goltsman, Gregory doi  openurl
  Title Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers Type Journal Article
  Year 2015 Publication Appl. Phys. Express Abbreviated Journal Appl. Phys. Express  
  Volume 8 Issue 2 Pages 022501 (1 to 4)  
  Keywords (up)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1882-0778 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ smirnov2015dependence Serial 1049  
Permanent link to this record
 

 
Author Bandurin, Denis; Svintsov, Dmitry; Gayduchenko, Igor; Xu, Shuigang; Principi, Alessandro; Moskotin, Maksim; Tretyakov, Ivan; Yagodkin, Denis; Zhukov, Sergey; Taniguchi, Takashi; Watanabe, Kenji; Grigorieva, Irina; Polini, Marco; Goltsman, Gregory; Geim, Andre; Fedorov, Georgy url  openurl
  Title Resonant terahertz photoresponse and superlattice plasmons in graphene field-effect transistors Type Abstract
  Year 2019 Publication APS March Meeting Abbreviated Journal APS March Meeting  
  Volume Issue Pages F14.015  
  Keywords (up)  
  Abstract Plasmons, collective oscillations of electron systems, can couple light and electric current, and thus can be used to create compact photodetectors, radiation mixers, and spectrometers. Despite the effort, it has proven challenging to implement plasmonic devices operating at THz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically-tunable plasmons. In this talk, we will demonstrate plasmon-assisted resonant detection of THz radiation by antenna-coupled graphene FETs that act as both rectifying elements and plasmonic Fabry-Perot cavities amplifying the photoresponse. We will show that by varying the plasmon velocity using gate voltage, our detectors can be tuned between multiple resonant modes, a functionality that we apply to measure plasmons' wavelength and lifetime in graphene as well as to probe collective modes in its moire minibands. Our approach offers a convenient tool for further plasmonic research that is often difficult under non-ambient conditions and promises a viable route for various THz applications. We acknowledge Leverhulme Trust, Russian Science Foundation Grants N18-72-00234 and 17-72-30036, Russian Foundation for Basic Research No. 18-57-06001 and 16-29-03402.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1290  
Permanent link to this record
 

 
Author Goltsman, Gregory N. url  openurl
  Title Development and applications of terahertz hot electron bolometers Type Abstract
  Year 2021 Publication 1st Moscow Int. Conf. on Submillimeter and Millimeter Astronomy: Objectives and Instruments Abbreviated Journal 1st Moscow Int. Conf. on Submillimeter and Millimeter Astronomy: Objectives and Instruments  
  Volume Issue Pages  
  Keywords (up)  
  Abstract The development of techniques and technologies for the deposition of ultrathin superconducting films, the creation of superconducting structures on a nanometer scale is the basis of significant progress in the field of superconducting receiving systems. Ultrathin NbN films are the basis for a wide range of record-breaking hot electron devices: direct and heterodyne terahertz detectors. Terahertz receivers are especially in demand in high-resolution spectroscopy for astronomical, atmospheric, and medical research. HEB receivers are widely used in terahertz radio astronomy. For example, the Dutch SRON Institute is preparing a project for the GUSTO hot air balloon telescope with a HEB mixer array at 1.4 THz and 1.9 THz. A 5-meter Chinese terahertz telescope DATE5 with HEB mixers at 1.4 THz is installed at the South Pole. The Stratospheric Observatory (SOFIA) uses HEB mixer matrices in the GREAT instrument operating in the 1.2 – 4.7 THz range. It is planned to implement the international project Origins Space Telescope (OST) in the far infrared region based on HEB receivers. The Japanese project Smiles-2 will allow measurements at 1.8 THz in the upper layers of the stratosphere and mesosphere. The development of the Millimetron space observatory continues in Russia.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference First Moscow International Conference on Submillimeter and Millimeter Astronomy: Objectives and Instruments, Astro Space Center, Moscow, 12-16 April 2021, id. 2  
  Notes Downloaded from https://millimetron.ru/conference_2021/Goltsman.pdf; Author: Sergey; Last modification: 2021-04-14 Approved no  
  Call Number Serial 1771  
Permanent link to this record
 

 
Author Elmanov, Ilia; Elmanova, Anna; Kovalyuk, Vadim; An, Pavel; Goltsman, Gregory doi  isbn
openurl 
  Title Silicon nitride photonic crystal cavity coupled with NV-centers in nanodiamonds Type Conference Article
  Year 2020 Publication Proc. 32-nd EMSS Abbreviated Journal Proc. 32-nd EMSS  
  Volume Issue Pages 344-348  
  Keywords (up)  
  Abstract The development of integrated quantum photonics requires a high efficient excitation and coupling of a single photon source with on-chip devices. In this paper, we show our results of modelling for high-Q photonic crystal cavity, optimized for zero phonon line emission of NV-centers in nanodiamonds. Modelling was performed for the silicon nitride platform and obtained a quality factor equals to 6136 at 637 nm wavelength.  
  Address NV-centers, nanodiamonds  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2724-0029 ISBN 978-88-85741-44-7 Medium  
  Area Expedition Conference 32nd European Modeling & Simulation Symposium  
  Notes Approved no  
  Call Number Serial 1840  
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Paine, Scott; Lobanov, Yury; Blundell, Raymond; Goltsman, Gregory doi  openurl
  Title Temperature resolution of an HEB receiver at 810 GHz Type Journal Article
  Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 19 Issue 3 Pages 293-296  
  Keywords (up) HEB mixer  
  Abstract We present the results of direct measurements of the temperature resolution of an HEB receiver operating at 810 GHz, in both continuum and spectroscopic modes. In the continuum mode, the input of the receiver was switched between black bodies with different physical temperatures. With a system noise temperature of around 1100 K, the receiver was able to resolve loads which differed in temperature by about 1 K over an integration time of 5 seconds. This resolution is significantly worse than the value of 0.07 K given by the radiometer equation. In the spectroscopic mode, a gas cell filled with carbonyl sulphide (OCS) gas was used and the emission line at 813.3537060 GHz was measured using the receiver in conjunction with a digital spectrometer. From the observed spectra, we determined that the measurement uncertainty of the equivalent emission temperature was 2.8 K for an integration time of 0.25 seconds and a spectral resolution of 12 MHz, compared to a 1.4 K temperature resolution given by the radiometer equation. This relative improvement is due to the fact that at short integration times the contribution from 1/f noise and drift are less dominant. In both modes, the temperature resolution was improved by about 40% with the use of a feedback loop which adjusted the level of an injected microwave radiation to maintain a constant operating current of the HEB mixer. This stabilization scheme has proved to be very effective to keep the temperature resolution of the HEB receiver to close to the theoretical value given by the radiometer equation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 636  
Permanent link to this record
 

 
Author Meledin, Denis; Pavolotsky, Alexey; Desmaris, Vincent.; Lapkin, Igor; Risacher, Christophe; Perez, Victor; Henke, Douglas; Nystrom, Olle; Sundin, Erik; Dochev, Dimitar; Pantaleev, Miroslav; Fredrixon, Mathias; Strandberg, Magnus; Voronov, Boris; Goltsman, Gregory; Belitsky, Victor url  doi
openurl 
  Title A 1.3-THz balanced waveguide HEB mixer for the APEX telescope Type Journal Article
  Year 2009 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal  
  Volume 57 Issue 1 Pages 89-98  
  Keywords (up) HEB, mixer, waveguide, balanced, NbN  
  Abstract In this paper, we report about the development, fabrication, and characterization of a balanced waveguide hot electron bolometer (HEB) receiver for the Atacama Pathfinder EXperiment telescope covering the frequency band of 1.25–1.39 THz. The receiver uses a quadrature balanced scheme and two HEB mixers, fabricated from 4- to 5-nm-thick NbN film deposited on crystalline quartz substrate with an MgO buffer layer in between. We employed a novel micromachining method to produce all-metal waveguide parts at submicrometer accuracy (the main-mode waveguide dimensions are 90×180 μm). We present details on the mixer design and measurement results, including receiver noise performance, stability and “first-light” at the telescope site. The receiver yields a double-sideband noise temperature averaged over the RF band below 1200 K, and outstanding stability with a spectroscopic Allan time more than 200 s.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 554  
Permanent link to this record
 

 
Author Pentin, Ivan; Finkel, Matvey; Maslennikov, Sergey; Vakhtomin, Yuri; Smirnov, Konstantin; Kaurova, Nataliya; Goltsman, Gregory url  openurl
  Title Superconducting hot-electron-bolometer mixers for the mid-IR Type Journal Article
  Year 2017 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.  
  Volume Issue 10 Pages  
  Keywords (up) IR NbN HEB mixers  
  Abstract The work presents the result of development of the NbN superconducting hot-electron-bolometer (HEB) mixer. The sensitive element of the mixer is directly coupled to mid-IR radiation, and doesn’t have planar metallic antenna. Investigations of noise characteristics of NbN HEB mixer were performed at the frequency 28.4 THz (λ = 10.6 µm) by using gas-discharge CW CO2-laser without consideration of optical and electrical losses in the heterodyne receiver. The noise temperature of NbN HEB mixer with the size of the sensitive element 10 µm × 10 µm was 2320 K (~ 1.5hν/kB) at the heterodyne frequency of 28.4 THz. The noise temperature was determined by measuring the Y-factor taking into account the term which describes fluctuations of zero-point oscillations in accordance with the fluctuation-dissipation theorem of Calle-Welton. Isothermal method was used to estimate the absorbed heterodyne radiation power which was 9 µW at the optimal operating point for the minimum noise temperature of NbN HEB mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1684-1719 ISBN Medium  
  Area Expedition Conference  
  Notes http://jre.cplire.ru/jre/oct17/9/abstract.html (Russian) Гетеродинный приемник со сверхпроводниковым смесителем на эффекте электронного разогрева для среднего инфракрасного диапазона Approved no  
  Call Number Serial 1747  
Permanent link to this record
 

 
Author Wild, Wolfgang; Baryshev, Andrey; de Graauw, Thijs; Kardashev, Nikolay; Likhachev, Sergey; Goltsman, Gregory; Koshelets, Valery url  openurl
  Title Instrumentation for Millimetron – a large space antenna for THz astronomy Type Conference Article
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 19th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 186-191  
  Keywords (up) Millimetron space observatory, VLBI  
  Abstract Millimetron is a Russian-led 12m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation and funded for launch after 2015. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron is currently in a conceptual design phase carried out by the Astro Space Center in Moscow and SRON Netherlands Institute for Space Research. It will use a passively cooled deployable antenna with a high-precision central 3.5m diameter mirror and high- precision antenna petals. The antenna is specified for observations up to ~2 THz over the whole 12m diameter, and to higher frequencies using the central 3.5m solid mirror. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space VLBI system. As single-dish, angular resolutions on the order of 3 to 12 arcsec will be achieved and spectral resolutions of up to 10 6 employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines resulting in micro-arcsec angular resolution. The scientific payload will consist of heterodyne and direct detection instruments covering the most important sub-/millimeter spectral regions (including some ALMA bands) and will build on the Herschel and ALMA heritage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1412  
Permanent link to this record
 

 
Author Seliverstov, Sergey V.; Rusova, Anastasia A.; Kaurova, Natalya S.; Voronov, Boris M.; Goltsman, Gregory N. openurl 
  Title AC-biased superconducting NbN hot-electron bolometer for frequency-domain multiplexing Type Conference Article
  Year 2017 Publication Proc. 28th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 28th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 120-122  
  Keywords (up) NbN HEB mixer  
  Abstract We present the results of characterization of fast and sensitive superconducting antenna-coupled THz direct detector based on NbN hot-electron bolometer (HEB) with AC-bias. We discuss the possibility of implementation of the AC-bias for design the readout system from the multi-element arrays of HEBs using standard technique of frequency-domain multiplexing. We demonstrate experimentally that this approach does not lead to significant deterioration of the HEB sensitivity compared with the value obtained for the same detector with DC- bias. Results of a numerical calculations of the HEB responsivity at AC-bias are in a good agreement with the experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1174  
Permanent link to this record
 

 
Author Tretyakov, Ivan; Seliverstov, Sergey; Zolotov, Philipp; Kaurova, Natalya; Voronov, Boris; Finkel, Matvey; Goltsman, Gregory url  openurl
  Title Noise temperature and noise bandwidth of hot-electron bolometer mixer at 3.8 THz Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 77  
  Keywords (up) NbN HEB mixer  
  Abstract We report on our recent results of double sideband (DSB) noise temperature and bandwidth measurements of quasi-optical hot electron bolometer (HEB) mixers at local oscillator frequency of 3.8 THz. The HEB mixers used in this work were made of a NbN thin film and had a superconducting transition temperature of about 10.3 K. To couple terahertz radiation, the NbN microbridge (0.2 μm long and 2 μm wide) was integrated with a planar logarithmic-spiral antenna. The mixer chip was glued to an elliptical Si lens clamped tightly to a mixer block mounted on the 4.2 K plate of a liquid helium cryostat. The terahertz radiation was fed into the HEB device through the cryostat window made of a 0.5 mm thick HDPE. A band-pass mesh filter was mounted on the 4.2 K plate to minimize the direct detection effect [1]. We used a gas discharge laser irradiating at 3.8 THz H 2 0 line as a local oscillator (LO). The LO power was combined with a black body broadband radiation via Mylar beam splitter. Our receiver allows heterodyne detection with an intermediate frequency (IF) of a several gigahertz which dictates usage of a wideband SiGe low noise amplifier [2]. The receiver IF output signal was further amplified at room temperature and fed into a square-law power detector through a band-pass filter. The DSB receiver noise temperature was measured using a conventional Y-factor technique at IF of 1.25 GHz and band of 40 MHz. Using wideband amplifiers at both cryogenic and room temperature stages we have estimated IF bandwidth of the HEB mixers used. The obtained results strengthen the position of the HEB mixer as one of the most important tools for submillimeter astronomy. This device operates well above the energy gap (at frequencies above 1 THz) where performance of state-of-the-art SIS mixers starts to degrade. So, HEB mixers are expected to be a device of choice in astrophysical observations (ground-, aircraft- and space-based) at THz frequencies due to its excellent noise performance and low LO power requirements. The HEB mixers will be in operation on Millimetron Space Observatory. References 1. J. J. A. Baselmans, A. Baryshev, S. F. Reker, M. Hajenius, J. R. Gao, T. M. Klapwijk, Yu. Vachtomin, S. Maslennikov, S. Antipov, B. Voronov, and G. Gol'tsman, Appl. Phys. Lett., 86, 163503 (2005). 2. Sander Weinreb, Life Fellow, IEEE, Joseph C. Bardin, Student Member, IEEE, and Hamdi Mani, “Design of Cryogenic SiGe Low-Noise Amplifiers”, IEEE Transactions on Microwave Theory and Techniques, 55, 11, 2007.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1362  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: