|   | 
Details
   web
Records
Author Semenov, A.; Hübers, H.-W.; Engel, A.; Gol’tsman, G.
Title Superconducting quantum detector for far infrared astronomy Type Conference Article
Year 2002 Publication Far-IR, Sub-mm & MM Detector Technology Workshop Abbreviated Journal Far-IR, Sub-mm & MM Detector Technology Workshop
Volume Issue Pages 3-49
Keywords SQD
Abstract We present the concept of the superconducting quantum detector for astronomy. Response to a single absorbed photon appears due to successive formation of a normal spot and phase-slip-centres in a narrow strip carrying sub-critical supercurrent. The detector simultaneously has a moderate energy resolution and a variable cut-off wavelength depending on both the material used and operation conditions. We simulated performance of the background-limited direct detector having the 100-micrometer cut-off wavelength. Low dark count rate will allow to realise 10-21 W Hz-1/2 noise equivalent power at 4 K background radiation. The detection mechanism provides a moderate 1/20 energy resolution at 50-micrometer wavelength.
Address
Corporate Author Thesis
Publisher NASA Place of Publication Editor Wolf, J.; Farhoomand, J.; McCreight, C.R.
Language Summary Language Original Title
Series Editor Series Title NASA CP Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Volume: 211408 Approved no
Call Number Serial 1538
Permanent link to this record
 

 
Author Hübers, H.-W.; Schubert, J.; Krabbe, A.; Birk, M.; Wagner, G.; Semenov, A.; Gol’tsman, G.; Voronov, B.; Gershenzon, E.
Title Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies Type Journal Article
Year 2001 Publication Infrared Physics & Technology Abbreviated Journal Infrared Physics & Technology
Volume 42 Issue 1 Pages 41-47
Keywords NbN HEB mixers, anti-reflection coating
Abstract Parylene C was investigated as anti-reflection coating for silicon at terahertz frequencies. Measurements with a Fourier-transform spectrometer show that the transmittance of pure silicon can be improved by about 30% when applying a layer of Parylene C with a quarter wavelength optical thickness. The 10% bandwidth of this coating extends from 1.5 to 3 THz for a center frequency of 2.3–2.5 THz, where the transmittance is constant. Heterodyne measurements demonstrate that the noise temperature of a hot-electron-bolometric mixer can be reduced significantly by coating the silicon lens of the hybrid antenna with a quarter wavelength Parylene C layer. Compared to the same mixer with an uncoated lens the improvement is about 30% at a frequency of 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 1350-4495 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1548
Permanent link to this record
 

 
Author Yagoubov, P.; Hübers, H.-W.; Gol’tsman, G.; Semenov, A.; Gao, J.; Hoogeveen, R.; de Graauw, T.; Birk, M.; Selig, A.; de Korte, P.
Title Hot-electron bolometer mixers – technology for far-infrared heterodyne instruments in future atmospheric chemistry missions Type Conference Article
Year 2001 Publication Proc. 3rd Int. Symp. Submillimeter Wave Earth Observation From Space Abbreviated Journal Proc. 3rd Int. Symp. Submillimeter Wave Earth Observation From Space
Volume Issue Pages 57-69
Keywords HEB mixers
Abstract
Address Delmenhorst
Corporate Author Thesis
Publisher Logos-Verlag Place of Publication Editor Buehler, S.; Berlin
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN 3-89722-700-2 Medium
Area Expedition Conference International Symposium on Submillimeter Wave Earth Observation from Space, ISSMWEOS01
Notes Approved no
Call Number Serial 1549
Permanent link to this record
 

 
Author Schubert, J.; Semenov, A.; Gol'tsman, G.; Hübers, H.-W.; Schwaab, G.; Voronov, B.; Gershenzon, E.
Title Noise temperature and sensitivity of a NbN hot-electron mixer at frequencies from 0.7 THz to 5.2 THz Type Conference Article
Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 190-199
Keywords NbN HEB mixers
Abstract We report on noise temperature measurements of a NbN phonon-cooled hot-electron bolometric mixer at different bias regimes. The device was a 3 nm thick bridge with in-plane dimensions of 1.7 x 0.2 gm 2 integrated in a complementary logarithmic spiral antenna. Measurements were performed at frequencies ranging from 0.7 THz up to 5.2 THz. The measured DSB noise temperatures are 1500 K (0.7 THz), 2200 K (1.4 THz), 2600 K (1.6 THz), 2900 K (2.5 THz), 4000 K (3.1 THz) 5600 K (4.3 THz) and 8800 K (5.2 THz). Two bias regimes are possible in order to achieve low noise temperatures. But only one of them yields sensitivity fluctuations close to the theoretical limit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1573
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Hübers, H.-W.; Schubert, J.; Schwaab, G.; Gol'tsman, G.; Gershenzon, E.
Title NbN hot electron bolometric mixers at frequencies between 0.7 and 3.1 THz Type Conference Article
Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 238-246
Keywords NbN HEB mixers
Abstract The performance of NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixers is investigated in the 0.7-3.1 THz frequency range. The devices are made from a 3.5-4 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The length of the bolometer microbridge is 0.1- 0.2 gm, the width is 1-2 gm. The best results of the DSB receiver noise temperature measured at 1.5 GHz intermediate frequency are: 800 K at 0.7 THz, 1100 K at 1.6 THz, 2000 K at 2.5 THz and 4200 K at 3.1 THz. The measurements were performed with a far infrared laser as the local oscillator (LO) source. The estimated LO power required is less than 500 nW at the receiver input. First results on the spiral antenna polarization measurements are reported.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1575
Permanent link to this record