toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Klapwijk, T. M.; Barends, R.; Gao, J. R.; Hajenius, M.; Baselmans, J. J. A. openurl 
  Title Improved superconducting hot-electron bolometer devices for the THz range Type Conference Article
  Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5498 Issue Pages 129-139  
  Keywords HEB mixer distributed model, numerical model  
  Abstract Improved and reproducible heterodyne mixing (noise temperatures of 950 K at 2.5 THz) has been realized with NbN based hot-electron superconducting devices with low contact resistances. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, has been used to understand the physical conditions during the mixing process. We find that the mixing is predominantly due to the exponential rise of the local resistivity as a function of electron temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Invited talk, Recommended by Klapwijk Approved no  
  Call Number Serial 912  
Permanent link to this record
 

 
Author Hajenius, M.; Barends, R.; Gao, J. R.; Klapwijk, T. M.; Baselmans, J. J. A.; Baryshev, A.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Local resistivity and the current-voltage characteristics of hot electron bolometer mixers Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 495-498  
  Keywords HEB mixer distributed model, HEB distributed model, distributed HEB model  
  Abstract Hot-electron bolometer devices, used successfully in low noise heterodyne mixing at frequencies up to 2.5 THz, have been analyzed. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, is used to model pumped IV curves and understand the physical conditions during the mixing process. We argue that the mixing is predominantly due to the strongly temperature dependent local resistivity of the NbN. Experimentally we identify the origins of different transition temperatures in a real HEB device, suggesting the importance of the intrinsic resistive transition of the superconducting bridge in the modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 980  
Permanent link to this record
 

 
Author Hajenius, M.; Yang, Z. Q.; Gao, J. R.; Baselmans, J. J. A.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title Optimized sensitivity of NbN hot electron bolometer mixers by annealing Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages 399-402  
  Keywords NbN HEB mixers  
  Abstract We report that the heterodyne sensitivity of superconducting hot-electron bolometers (HEBs) increases by 25-30% after annealing at 85degC in high vacuum. The devices studied are twin-slot antenna coupled mixers with a small area NbN bridge of 1 mum times 0.15 mum, above which there is a SiO 2 passivation layer. The mixer noise temperature, gain, and resistance versus temperature curve of a HEB before and after annealing are compared and analysed. We show that the annealing reduces the intrinsic noise of the mixer by 37% and makes the superconducting transition of the bridge and the contacts sharper. We argue that the reduction ofthe noise is mainly due to the improvement of the transparency of the contact/film interface. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and at a bath temperature of 4.2 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1426  
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Tichelaar, F. D.; Klapwijk, T. M.; Voronov, B.; Grishin, E.; Gol’tsman, G.; Zorman, C. A.; Mehregany, M. url  doi
openurl 
  Title Monocrystalline NbN nanofilms on a 3C-SiC∕Si substrate Type Journal Article
  Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 91 Issue 6 Pages 062504 (1 to 3)  
  Keywords NbN films, nanofilms  
  Abstract The authors have realized NbN (100) nanofilms on a 3C-SiC (100)/Si(100) substrate by dc reactive magnetron sputtering at 800°C. High-resolution transmission electron microscopy (HRTEM) is used to characterize the films, showing a monocrystalline structure and confirming epitaxial growth on the 3C-SiC layer. A film ranging in thickness from 3.4to4.1nm shows a superconducting transition temperature of 11.8K, which is the highest reported for NbN films of comparable thickness. The NbN nano-films on 3C-SiC offer a promising alternative to improve terahertz detectors. For comparison, NbN nanofilms grown directly on Si substrates are also studied by HRTEM.

The authors acknowledge S. V. Svetchnikov at National Centre for HRTEM at Delft, who prepared the specimens for HRTEM inspections. This work was supported by the EU through RadioNet and INTAS.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1425  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G. url  openurl
  Title Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers Type Abstract
  Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 81  
  Keywords NbN HEB mixers  
  Abstract We present a detailed experimental study of the direct detection effect in a small volume (0.15pm x lpm) NbN hot electron bolometer mixer. It is a quasioptical mixer with a twin slot antenna designed for 700 GHz and the measurement was done at a LO frequency of 670 GHz. The direct detection effect is characterized by a change in the mixer bias current when switching broadband radiation from a 300 K hot load to a 77 K cold load in a standard Y factor measurement. The result is, depending on the receiver under study, an increase or decrease in the receiver noise temperature. We find that the small signal noise temperature, which is the noise temperature that would be observed without the presence of the direct detection effect, and thus the one that is relevant for an astronomical observation, is 20% lower than the noise temperature obtained using 300 K and 77 K calibration loads. Thus, in our case the direct detection effect reduces the mixer sensitivity. These results are in good agreement with previous measurement at THz frequencies [1]. Other experiments report an increase in mixer sensitivity [2]. To analyze this discrepancy we have designed a separate set of experiments to find out the physical origin of the direct detection effect. Possible candidates are the bias current dependence of the mixer gain and the bias current dependence of the IF match. We measured directly the change in mixer IF match and receiver gain due to the direct detection effect. From these measurements we conclude that the direct detection effect is caused by a combination of bias current reduction when switching form the 77 K to the 300 K load in combination with the bias current dependence of the receiver gain. The bias current dependence of the receiver gain is shown to be mainly caused by the current dependence of the mixer gain. We also find that an increase in receiver sensitivity due to the direct detection effect is only possible if the noise temperature change due to the direct detection is dominated by the mixer-amplifier IF match. [1] J.J.A. Baselmans, A. Baryshev, S.F. Reker, M. Hajenius, J.R. Gao, T.M. Klapwijk, Yu.Vachtomin, S. Maslennikov, S. Antipov, B. Voronov, and G. Gol'tsman., Appl. Phys. Lett. 86, 163503 (2005). [2] S. Svechnokov, A. Verevkin, B. Voronov, E. Menschikov. E. Gershenzon, G. Gol'tsman, 9th Int. Symp. On Space THz. Techn., 45, (1999).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1437  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: