Records |
Author |
Hubers, H.-W.; Semenov, A.; Richter, H.; Schwarz, M.; Gunther, B.; Smirnov, K.; Gol’tsman, G.; Voronov, B. |
Title |
Heterodyne receiver for 3-5 THz with hot-electron bolometer mixer |
Type |
Conference Article |
Year |
2004 |
Publication |
Proc. SPIE |
Abbreviated Journal |
Proc. SPIE |
Volume |
5498 |
Issue |
|
Pages |
579-586 |
Keywords |
NbN HEB mixers |
Abstract |
Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently build for SOFIA and Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. The local oscillator and the mixer are the most critical components for a heterodyne receiver operating at 3-5 THz. The design and performance of an optically pumped THz gas laser optimized for this frequency band will be presented. In order to optimize the performance for this frequency hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0 x 0.2 μm2 incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 K and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
SPIE |
Place of Publication |
|
Editor |
Zmuidzinas, J.; Holland, W.S.; Withington, S. |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
Millimeter and Submillimeter Detectors for Astronomy II |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1483 |
Permanent link to this record |
|
|
|
Author |
Richter, H.; Semenov, A.; Hubers, H.-W.; Smirnov, K.; Gol’tsman, G.; Voronov, B. |
Title |
Phonon cooled hot-electron bolometric mixer for 1-5 THz |
Type |
Conference Article |
Year |
2004 |
Publication |
Proc. 29th IRMMW / 12th THz |
Abbreviated Journal |
Proc. 29th IRMMW / 12th THz |
Volume |
|
Issue |
|
Pages |
241-242 |
Keywords |
NbN HEB mixers |
Abstract |
Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently built for SOFIA and Herschel, superconducting hot electron bolometers (HEB) are used to achieve this goal at frequencies above 1.4 THz. In order to optimize the performance for this frequency of hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0/spl times/0.2 /spl mu/m/sup 2/ incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1506 |
Permanent link to this record |
|
|
|
Author |
Schwaab, G.W.; Sirmain, G.; Schubert, J.; Hubers, H.-W.; Gol'tsman, G.; Cherednichenko, S.; Verevkin, A.; Voronov, B.; Gershenzon, E. |
Title |
Investigation of NbN phonon-cooled HEB mixers at 2.5 THz |
Type |
Journal Article |
Year |
1999 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
9 |
Issue |
2 |
Pages |
4233-4236 |
Keywords |
NbN HEB mixers |
Abstract |
The development of superconducting hot electron bolometric (HEB) mixers has been a big step forward in the direction of quantum noise limited mixer performance at THz frequencies. Such mixers are crucial for the upcoming generation of airborne and spaceborne THz heterodyne receivers. In this paper we report on new results on a phonon-cooled NbN HEB mixer using e-beam lithography. The superconducting film is 3 nm thick. The mixer is 0.2 μm long and 1.5 μm wide and it is integrated in a spiral antenna on a Si substrate. The device is quasi-optically coupled through a Si lens and a dielectric beam combiner to the radiation of an optically pumped FIR ring gas laser cavity. The performance of the mixer at different THz frequencies from 0.69 to 2.55 THz with an emphasis on 2.52 THz is demonstrated. At 2.52 THz minimum DSB noise temperatures of 4200 K have been achieved at an IF of 1.5 GHz and a bandwidth of 40 MHz with the mixer mounted in a cryostat and a 0.8 m long signal path in air. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1051-8223 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
550 |
Permanent link to this record |
|
|
|
Author |
Smirnov, K. V.; Vachtomin, Yu. B.; Antipov, S. V.; Maslennikov, S. N.; Kaurova, N. S.; Drakinsky, V. N.; Voronov, B. M.; Gol'tsman, G. N.; Semenov, A. D.; Richter, H.; Hubers, H.-W. |
Title |
Noise and gain performance of spiral antenna coupled HEB mixers at 0.7 THz and 2.5 THz |
Type |
Conference Article |
Year |
2003 |
Publication |
Proc. 14th Int. Symp. Space Terahertz Technol. |
Abbreviated Journal |
Proc. 14th Int. Symp. Space Terahertz Technol. |
Volume |
|
Issue |
|
Pages |
405-412 |
Keywords |
NbN HEB mixers |
Abstract |
Noise and gain performance of hot electron bolometer (HEB) mixers based on ultrathin superconducting NbN films integrated with a spiral antenna was studied. The noise temperature measurements for two samples with different active area of 3 p.m x 0.24 .tni and 1.3 1..tm x 0.12 1.tm were performed at frequencies 0.7 THz and 2.5 THz. The best receiver noise temperatures 370 K and 1600 K, respectively, have been found at these frequencies. The influence of contact resistance between the superconductor and the antenna terminals on the noise temperature of HEB is discussed. The noise and gain bandwidth of 5GHz and 4.2 GHz, respectively, are demonstrated for similar HEB mixer at 0.75 THz. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1502 |
Permanent link to this record |
|
|
|
Author |
Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Schubert, J.; Hubers, H.-W.; Schwaab, G.; Gol'tsman, G.; Gershenzon, E. |
Title |
Heterodyne measurements of a NbN superconducting hot electron mixer at terahertz frequencies |
Type |
Journal Article |
Year |
1999 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
9 |
Issue |
2 |
Pages |
3757-3760 |
Keywords |
NbN HEB mixers |
Abstract |
The performance of a NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixer is investigated in the 0.65-3.12 THz frequency range. The device is made from a 3 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are 0.2/spl times/2 /spl mu/m. The best results of the DSB noise temperature at 1.5 GHz IF frequency obtained with one device are: 1300 K at 650 GHz, 4700 K at 2.5 THz and 10000 K at 3.12 THz. The measurements were performed at 4.5 K ambient temperature. The amount of local oscillator (LO) power absorbed in the bolometer is about 100 nW. The mixer is linear to within 1 dB compression up to the signal level 10 dB below that of the LO. The intrinsic single sideband conversion gain measured at 650 GHz is -9 dB, the total conversion gain is -14 dB. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1051-8223 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1569 |
Permanent link to this record |