|
Records |
Links |
|
Author |
Cherednichenko, S.; Khosropanah, P.; Adam, A.; Merkel, H. F.; Kollberg, E. L.; Loudkov, D.; Gol'tsman, G. N.; Voronov, B. M.; Richter, H.; Huebers, H.-W. |
|
|
Title |
1.4- to 1.7-THz NbN hot-electron bolometer mixer for the Herschel space observatory |
Type |
Conference Article |
|
Year |
2003 |
Publication |
Proc. SPIE |
Abbreviated Journal |
Proc. SPIE |
|
|
Volume |
4855 |
Issue |
|
Pages |
361-370 |
|
|
Keywords |
NbN HEB mixers |
|
|
Abstract |
NbN hot- electron bolometer mixers have reached the level of 10hv/k in terms of the input noise temperature with the noise bandwidth of 4-6 GHz from subMM band up to 2.5 THz. In this paper we discuss the major characteristics of this kind of receiver, i.e. the gain and the noise bandwidth, the noise temperature in a wide RF band, bias regimes and optimisation of RF coupling to the quasioptical mixer. We present the status of the development of the mixer for Band 6 Low for Herschel Telescope. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
SPIE |
Place of Publication |
|
Editor |
Phillips, T.G.; Zmuidzinas, J. |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
Millimeter and Submillimeter Detectors for Astronomy |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1521 |
|
Permanent link to this record |
|
|
|
|
Author |
Cherednichenko, S.; Kroug, M.; Merkel, H.; Khosropanah, P.; Adam, A.; Kollberg, E.; Loudkov, D.; Gol'tsman, G.; Voronov, B.; Richter, H.; Huebers, H.-W. |
|
|
Title |
1.6 THz heterodyne receiver for the far infrared space telescope |
Type |
Journal Article |
|
Year |
2002 |
Publication |
Phys. C: Supercond. |
Abbreviated Journal |
Phys. C: Supercond. |
|
|
Volume |
372-376 |
Issue |
|
Pages |
427-431 |
|
|
Keywords |
NbN HEB mixers, applications |
|
|
Abstract |
A low noise heterodyne receiver is being developed for the terahertz range using a phonon-cooled hot-electron bolometric mixer based on 3.5 nm thick superconducting NbN film. In the 1–2 GHz intermediate frequency band the double-sideband receiver noise temperature was 450 K at 0.6 THz, 700 K at 1.6 THz and 1100 K at 2.5 THz. In the 3–8 GHz IF band the lowest receiver noise temperature was 700 K at 0.6 THz, 1500 K at 1.6 THz and 3000 K at 2.5 THz while it increased by a factor of 3 towards 8 GHz. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0921-4534 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1527 |
|
Permanent link to this record |
|
|
|
|
Author |
Hoogeveen, R. W. M.; Yagoubov, P. A.; Maurellis, A.; Koshelets, V. P.; Shitov, S. V.; Mair, U.; Krocka, M.; Wagner, G.; Birk, M.; Huebers, H.-W.; Richter, H.; Semenov, A.; Gol’tsman, G. N.; Voronov, B. M.; Ellison, B.N.; Kerridge, B.J.; Matheson, D. N.; Alderman, B.; Harman, M.; Siddans, R.; Reburn, J. |
|
|
Title |
New cryogenic heterodyne techniques applied in TELIS: the balloonborne THz and submillimeter limb sounder for atmospheric research |
Type |
Conference Article |
|
Year |
2003 |
Publication |
Proc. SPIE |
Abbreviated Journal |
Proc. SPIE |
|
|
Volume |
5152 |
Issue |
|
Pages |
347-355 |
|
|
Keywords |
TELIS, limb sounder, heterodyne detection, terahertz, sub millimeter, cryogenic, limb sounding, balloon borne, atmospheric research |
|
|
Abstract |
We present a design concept for a new state-of-the-art balloon borne atmospheric monitor that will allow enhanced limb sounding of the Earth’s atmosphere within the submillimeter and far-infrared wavelength spectral range: TELIS, TErahertz and submm LImb Sounder. The instrument is being developed by a consortium of major European institutes that includes the Space Research Organization of the Netherlands (SRON), the Rutherford Appleton Laboratory (RAL) will utilize state-of-the-art superconducting heterodyne technology and is designed to be a compact, lightweight instrument cpaable of providing broad spectral coverage, high spectral resolution and long flight duration ( 24 hours duration during a single flight campaign). The combination of high sensitivity and extensive flight duration will allow evaluation of the diurnal variation of key atmospheric constitutenets sucyh as OH, HO2, ClO, BrO togehter will onger lived constituents such as O3, HCL and N2O. Furthermore, TELIS will share a common balloon platform to that of the MIPAS-B Fourier Transform Spectrometer, developed by the Institute of Meteorology and Climate research of the over an extended spectral range. The combination of the TELIS and MIPAS instruments will provide atmospheric scientists with a very powerful observational tool. TELIS will serve as a testbed for new cryogenic heterodyne detection techniques, and as such it will act as a prelude to future spaceborne instruments planned by the European Space Agency (ESA). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
SPIE |
Place of Publication |
|
Editor |
Strojnik, M. |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
Infrared Spaceborne Remote Sensing XI |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1508 |
|
Permanent link to this record |
|
|
|
|
Author |
Huebers, H.-W.; Schubert, J.; Semenov, A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Schwaab, G. W. |
|
|
Title |
NbN phonon-cooled hot-electron bolometer as a mixer for THz heterodyne receivers |
Type |
Conference Article |
|
Year |
1999 |
Publication |
Proc. SPIE |
Abbreviated Journal |
Proc. SPIE |
|
|
Volume |
3828 |
Issue |
|
Pages |
410-416 |
|
|
Keywords |
NbN HEB mixers |
|
|
Abstract |
We have investigated a phonon-cooled NbN hot electron bolometric (HEB) mixer in the frequency range from 0.7 THz to 5.2 THz. The device was a 3.5 nm thin film with an in- plane dimension of 1.7 X 0.2 micrometers 2 integrated in a complementary logarithmic spiral antenna. The measured DSB receiver noise temperatures are 1500 K, 2200 K, 2600 K, 2900 K, 4000 K, 5600 K and 8800 K. The sensitivity fluctuation, the long term stability, and the antenna pattern were measured and the suitability of the mixer for a practical heterodyne receiver is discussed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Spie |
Place of Publication |
|
Editor |
Chamberlain, J.M. |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
Terahertz Spectroscopy and Applications II |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1477 |
|
Permanent link to this record |
|
|
|
|
Author |
Huebers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G. N.; Voronov, B. M. |
|
|
Title |
Superconducting hot electron bolometer as mixer for far-infrared heterodyne receivers |
Type |
Conference Article |
|
Year |
2003 |
Publication |
Proc. SPIE |
Abbreviated Journal |
Proc. SPIE |
|
|
Volume |
4855 |
Issue |
|
Pages |
395-401 |
|
|
Keywords |
NbN HEB mixers |
|
|
Abstract |
Heterodyne receivers for applications in astronomy need quantum limited sensitivity. In instruments which are currently under development for SOFIA or Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. We present results of the development of a phonon-cooled NbN HEB mixer for GREAT, the German Receiver for Astronomy at Terahertz Frequencies, which will be flown aboard SOFIA. The mixer is a small superconducting bridge incorporated in a planar feed antenna and a hyperhemispherical lens. Mixers with logarithmic-spiral and double-slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 17 dB. The response of the mixer was linear up to 400 K load temperature. The performance was verified by measuring an emission line of methanol at 2.5 THz. The measured linewidth is in good agreement with the linewidth deduced from pressure broadening measurements at millimeter wavelength. The results demonstrate that the NbN HEB is very well suited as a mixer for far-infrared heterodyne receivers. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
SPIE |
Place of Publication |
Tucson, USA |
Editor |
Phillips, T. G.; Zmuidzinas, J. |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference |
Abbreviated Series Title |
|
|
|
Series Volume |
4855 |
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
Millimeter and Submillimeter Detectors for Astronomy |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
335 |
|
Permanent link to this record |