|   | 
Details
   web
Records
Author Il'in, K. S.; Karasik, B. S.; Ptitsina, N. G.; Sergeev, A. V.; Gol'tsman, G. N.; Gershenzon, E. M.; Pechen, E. V.; Krasnosvobodtsev, S. I.
Title Electron-phonon-impurity interference in thin NbC films: electron inelastic scattering time and corrections to resistivity Type Conference Article
Year 1996 Publication Czech. J. Phys. Abbreviated Journal Czech. J. Phys.
Volume 46 Issue S2 Pages 857-858
Keywords NbC films
Abstract Complex study of transport properties of impure NbC films with the electron mean free pathl=0.6–13 nm show the crucial role of the electron-phonon-impurity interference (EPII). In the temperature range 20–70 K we found the interference correction to resistivity proportional to T2 and to the residual resistivity of the film. Using the comprehensive theory of EPII, we determine the electron coupling with transverse phonons and calculate the electron inelastic scattering time. Direct measurements of the inelastic electron scattering time using a response to a high-frequency amplitude modulated cw radiation agree well with the theory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0011-4626 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1617
Permanent link to this record
 

 
Author Sergeev, A.; Karasik, B. S.; Ptitsina, N. G.; Chulkova, G. M.; Il'in, K. S.; Gershenzon, E. M.
Title Electron–phonon interaction in disordered conductors Type Journal Article
Year 1999 Publication Phys. Rev. B Condens. Matter Abbreviated Journal Phys. Rev. B Condens. Matter
Volume 263-264 Issue Pages 190-192
Keywords disordered conductors, electron-phonon interaction
Abstract The electron–phonon interaction is strongly modified in conductors with a small value of the electron mean free path (impure metals, thin films). As a result, the temperature dependencies of both the inelastic electron scattering rate and resistivity differ significantly from those for pure bulk materials. Recent complex measurements have shown that modified dependencies are well described at K by the electron interaction with transverse phonons. At helium temperatures, available data are conflicting, and cannot be described by an universal model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0921-4526 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1765
Permanent link to this record
 

 
Author Semenov, A. D.; Il'in, K.; Siegel, M.; Smirnov, A.; Pavlov, S.; Richter, H.; Hübers, H.-W.
Title Evidence of non-bolometric mixing in the bandwidth of a hot-electron bolometer Type Journal Article
Year 2006 Publication Superconductor Science and Technology Abbreviated Journal Supercond. Sci. Technol.
Volume 19 Issue 10 Pages 1051-1056
Keywords HEB
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 536
Permanent link to this record
 

 
Author Il'in, K. S.; Verevkin, A. A.; Gol'tsman, G. N.; Sobolewski, R.
Title Infrared hot-electron NbN superconducting photodetectors for imaging applications Type Journal Article
Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 12 Issue 11 Pages 755-758
Keywords NbN SSPD, SNSPD
Abstract We report an effective quantum efficiency of 340, responsivity >200 A W-1 (>104 V W-1) and response time of 27±5 ps at temperatures close to the superconducting transition for NbN superconducting hot-electron photodetectors (HEPs) in the near-infrared and optical ranges. Our studies were performed on a few nm thick NbN films deposited on sapphire substrates and patterned into µm-size multibridge detector structures, incorporated into a coplanar transmission line. The time-resolved photoresponse was studied by means of subpicosecond electro-optic sampling with 100 fs wide laser pulses. The quantum efficiency and responsivity studies of our photodetectors were conducted using an amplitude-modulated infrared beam, fibre-optically coupled to the device. The observed picosecond response time and the very high efficiency and sensitivity of the NbN HEPs make them an excellent choice for infrared imaging photodetectors and input optical-to-electrical transducers for superconducting digital circuits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1562
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Il'in, K.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Hubers, H.; Siegel, M.; Gol'tsman, G.
Title Effect of the wire width and magnetic field on the intrinsic detection efficiency of superconducting nanowire single-photon detectors Type Journal Article
Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 23 Issue 3 Pages 2200205-2200205
Keywords SSPD, SNSPD
Abstract We present thorough measurements of the intrinsic detection efficiency in the wavelength range from 350 to 2500 nm for meander-type TaN and NbN superconducting nanowire single-photon detectors with different widths of the nanowire. The width varied from 70 nm to 130 nm. The open-beam configuration allowed us to accurately normalize measured spectra and to extract the intrinsic detection efficiency. For detectors from both materials the intrinsic detection efficiency at short wavelengths amounts at 100% and gradually decreases at wavelengths larger than the specific cut-off wavelengths, which decreases with the width of the nanowire. Furthermore, we show that applying weak magnetic fields perpendicular to the meander plane decreases the smallest detectable photon flux.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1376
Permanent link to this record