|   | 
Details
   web
Records
Author Il'in, K. S.; Cherednichenko, S. I.; Gol'tsman, G. N.; Currie, M.; Sobolewski, R.
Title Comparative study of the bandwidth of phonon-cooled NbN hot-electron bolometers in submillimeter and optical wavelength ranges Type (up) Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 323-330
Keywords NbN HEB mixers
Abstract We report the results of the bandwidth measurements of NbN hot-electron bolometers, perfomied in the terahertz frequency domain at 140 GHz and 660 GHz and in time domain in the optical range at the wavelength of 395 nm.. Our studies were done on 3.5-nm-thick NbN films evaporated on sapphire substrates and patterned into ilin-size microbridges. In order to measure the gain bandwidth, we used two identical BWOs (140 or 660 GHz), one functioning as a local oscillator and the other as a signal source. The bandwidth we achieved was 3.5-4 GHz at 4.2 K with the optimal LO and DC biases. Time-domain measurements with a resolution below 300 fs were performed using an electro-optic sampling system, in the temperature range between 4.2 K to 9 K at various values of the bias current and optical power. The obtained response time of the NbN hot-electron bolometer to —100- fs-wide Ti:sapphire laser pulses was about 27 ps, what corresponds to the 5.9 GHz gain bandwidth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1590
Permanent link to this record
 

 
Author Il'in, K. S.; Karasik, B. S.; Ptitsina, N. G.; Sergeev, A. V.; Gol'tsman, G. N.; Gershenzon, E. M.; Pechen, E. V.; Krasnosvobodtsev, S. I.
Title Electron-phonon-impurity interference in thin NbC films: electron inelastic scattering time and corrections to resistivity Type (up) Conference Article
Year 1996 Publication Czech. J. Phys. Abbreviated Journal Czech. J. Phys.
Volume 46 Issue S2 Pages 857-858
Keywords NbC films
Abstract Complex study of transport properties of impure NbC films with the electron mean free pathl=0.6–13 nm show the crucial role of the electron-phonon-impurity interference (EPII). In the temperature range 20–70 K we found the interference correction to resistivity proportional to T2 and to the residual resistivity of the film. Using the comprehensive theory of EPII, we determine the electron coupling with transverse phonons and calculate the electron inelastic scattering time. Direct measurements of the inelastic electron scattering time using a response to a high-frequency amplitude modulated cw radiation agree well with the theory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0011-4626 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1617
Permanent link to this record
 

 
Author Karasik, B. S.; Il'in, K. S.; Pechen, E. V.; Krasnosvobodtsev, S. I.
Title Diffusion cooling mechanism in a hot-electron NbC microbolometer mixer Type (up) Journal Article
Year 1996 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 68 Issue 16 Pages 2285-2287
Keywords HEB mixer, diffusion cooling channel, diffusion channel
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 262
Permanent link to this record
 

 
Author Semenov, A.; Engel, A.; Il'in, K.; Gol'tsman, G.; Siegel, M.; Hübers, H.-W.
Title Ultimate performance of a superconducting quantum detector Type (up) Journal Article
Year 2003 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal Eur. Phys. J. Appl. Phys.
Volume 21 Issue 3 Pages 171-178
Keywords NbN SSPD, SNSPD
Abstract We analyze the ultimate performance of a superconducting quantum detector in order to meet requirements for applications in near-infrared astronomy and X-ray spectroscopy. The detector exploits a combined detection mechanism, in which avalanche quasiparticle multiplication and the supercurrent jointly produce a voltage response to a single absorbed photon via successive formation of a photon-induced and a current-induced normal hotspot in a narrow superconducting strip. The response time of the detector should increase with the photon energy providing energy resolution. Depending on the superconducting material and operation conditions, the cut-off wavelength for the single-photon detection regime varies from infrared waves to visible light. We simulated the performance of the background-limited infrared direct detector and X-ray photon counter utilizing the above mechanism. Low dark count rate and intrinsic low-frequency cut-off allow for realizing a background limited noise equivalent power of 10−20 W Hz−1/2 for a far-infrared direct detector exposed to 4-K background radiation. At low temperatures, the intrinsic response time of the counter is rather determined by diffusion of nonequilibrium electrons than by the rate of energy transfer to phonons. Therefore, thermal fluctuations do not hamper energy resolution of the X-ray photon counter that should be better than 10−3 for 6-keV photons. Comparison of new data obtained with a Nb based detector and previously reported results on NbN quantum detectors support our estimates of ultimate detector performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1286-0042 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 534
Permanent link to this record
 

 
Author Semenov, A. D.; Il'in, K.; Siegel, M.; Smirnov, A.; Pavlov, S.; Richter, H.; Hübers, H.-W.
Title Evidence of non-bolometric mixing in the bandwidth of a hot-electron bolometer Type (up) Journal Article
Year 2006 Publication Superconductor Science and Technology Abbreviated Journal Supercond. Sci. Technol.
Volume 19 Issue 10 Pages 1051-1056
Keywords HEB
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 536
Permanent link to this record