toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Il’in, K.S.; Ptitsina, N.G.; Sergeev, A.V.; Gol’tsman, G.N.; Gershenzon, E.M.; Karasik, B.S.; Pechen, E.V.; Krasnosvobodtsev, S.I. url  doi
openurl 
  Title Interrelation of resistivity and inelastic electron-phonon scattering rate in impure NbC films Type Journal Article
  Year 1998 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 57 Issue 24 Pages (down) 15623-15628  
  Keywords NbC films  
  Abstract A complex study of the electron-phonon interaction in thin NbC films with electron mean free path l=2–13nm gives strong evidence that electron scattering is significantly modified due to the interference between electron-phonon and elastic electron scattering from impurities. The interference T2 term, which is proportional to the residual resistivity, dominates over the Bloch-Grüneisen contribution to resistivity at low temperatures up to 60 K. The electron energy relaxation rate is directly measured via the relaxation of hot electrons heated by modulated electromagnetic radiation. In the temperature range 1.5–10 K the relaxation rate shows a weak dependence on the electron mean free path and strong temperature dependence ∼Tn, with the exponent n=2.5–3. This behavior is explained well by the theory of the electron-phonon-impurity interference taking into account the electron coupling with transverse phonons determined from the resistivity data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1585  
Permanent link to this record
 

 
Author Sergeev, A. V.; Semenov, A. D.; Kouminov, P.; Trifonov, V.; Goghidze, I. G.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Transparency of a YBa2Cu3O7-film/substrate interface for thermal phonons measured by means of voltage response to radiation Type Journal Article
  Year 1994 Publication Phys. Rev. B Condens. Matter. Abbreviated Journal Phys. Rev. B Condens. Matter.  
  Volume 49 Issue 13 Pages (down) 9091-9096  
  Keywords YBCO films  
  Abstract The transparency of a film/substrate interface for thermal phonons was investigated for YBa2Cu3O7 thin films deposited on MgO, Al2O3, LaAlO3, NdGaO3, and ZrO2 substrates. Both voltage response to pulsed-visible and to continuously modulated far-infrared radiation show two regimes of heat escape from the film to the substrate. That one dominated by the thermal boundary resistance at the film/substrate interface provides an initial exponential decay of the response. The other one prevailing at longer times or smaller modulation frequencies causes much slower decay and is governed by phonon diffusion in the substrate. The transparency of the boundary for phonons incident from the film on the substrate and also from the substrate on the film was determined separately from the characteristic time of the exponential decay and from the time at which one regime was changed to the other. Taking into account the specific heat of optical phonons and the temperature dependence of the group velocity of acoustic phonons, we show that the body of experimental data agrees with acoustic mismatch theory rather than with the model that assumes strong diffusive scattering of phonons at the interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10009690 Approved no  
  Call Number Serial 1648  
Permanent link to this record
 

 
Author Nebosis, R. S.; Steinke, R.; Lang, P. T.; Schatz, W.; Heusinger, M. A.; Renk, K. F.; Gol’tsman, G. N.; Karasik, B. S.; Semenov, A. D.; Gershenzon, E. M. url  doi
openurl 
  Title Picosecond YBa2Cu3O7−δdetector for far‐infrared radiation Type Journal Article
  Year 1992 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 72 Issue 11 Pages (down) 5496-5499  
  Keywords YBCO HTS detectors  
  Abstract We report on a picosecond YBa2Cu3O7−δ detector for far‐infrared radiation. The detector, consisting of a current carrying structure cooled to liquid‐nitrogen temperature, was studied by use of ultrashort laser pulses from an optically pumped far‐infrared laser in the frequency range from 25 to 215 cm−1. We found that the sensitivity (1 mV/W) was almost constant in this frequency range. We estimated a noise equivalent power of less than 5×10−7 W Hz−1/2. Taking into account the results of a mixing experiment (in the frequency range from 4 to 30 cm−1) we suggest that the response time of the detector was few picoseconds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1668  
Permanent link to this record
 

 
Author Karasik, B. S.; Zorin, M. A.; Milostnaya, I. I.; Elantev, A. I.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Subnanosecond switching of YBaCuO films between superconducting and normal states induced by current pulse Type Journal Article
  Year 1995 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 77 Issue 8 Pages (down) 4064-4070  
  Keywords YBCO HTS switches  
  Abstract A study is reported of the current switching in high‐quality YBaCuO films deposited onto NdGaO3 and ZrO2 substrates between superconducting (S) and normal (N) states. The films 60–120 nm thick prepared by laser ablation were structured into single strips between gold contacts. The time dependence of the resistance after application of the voltage step to the film was monitored. Experiment performed within certain ranges of voltage amplitudes and temperatures has shown the occurrence of the fast stage (shorter than 400 ps) both in S‐N and N‐S transitions. A fraction of the film resistance changing within this stage in the S‐N transition increases with the current amplitude. A subnanosecond N‐S stage becomes more pronounced for shorter pulses. The fast switching is followed by the much slower change of resistance. The mechanism of switching is discussed in terms of the hot‐electron phenomena in YBaCuO. The contributions of other thermal processes (e.g., a phonon escape from the film, a heat diffusion in the film and substrate, a resistive domain formation) in the subsequent stage of the resistance dynamic have been also discussed. The basic limiting characteristics (average dissipated power, energy needed for switching, maximum repetition rate) of a picosecond switch which is proposed to be developed are estimated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1623  
Permanent link to this record
 

 
Author Lindgren, M.; Zorin, M. A.; Trifonov, V.; Danerud, M.; Winkler, D.; Karasik, B. S.; Gol'tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Optical mixing in a patterned YBa2Cu3O7-δ thin film Type Journal Article
  Year 1994 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 65 Issue 26 Pages (down) 3398-3400  
  Keywords YBCO HTS HEB mixer, bandwidth  
  Abstract Mixing of 1.56 µm infrared radiation from two lasers in a high quality YBa2Cu3O7-δ thin film, patterned to parallel strips, was demonstrated. A mixer bandwidth of 18 GHz, limited by the measurement system, was obtained. A model based on nonequilibrium electron heating gives a good fit to the data and predicts an intrinsic mixer bandwidth in excess of 100 GHz, operating in the whole infrared spectrum. Reduction of bolometric effects and ways to decrease the conversion loss of the mixer is discussed. The minimum conversion loss is expected to be ~10 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 251  
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Karasik, B. S.; Okunev, O. V.; Dzardanov, A. L.; Gershenzon, E. M.; Ekstrom, H.; Jacobsson, S.; Kollberg, E. url  doi
openurl 
  Title NbN hot electron superconducting mixers for 100 GHz operation Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages (down) 3065-3068  
  Keywords NbN HEB mixers  
  Abstract NbN is a promising superconducting material for hot-electron superconducting mixers with an IF bandwidth larger than 1 GHz. In the 1OO GHz frequency range, the following parameters were obtained for 50 /spl Aring/ thick NbN films at 4.2 K: receiver noise temperature (DSB) /spl sim/1000 K; conversion loss /spl sim/10 dB; IF bandwidth /spl sim/1 GHz; and local oscillator power /spl sim/1 /spl mu/W. An increase of the critical current of the NbN film, increased working temperature, and a better mixer matching may allow a broader IF bandwidth up to 2 GHz, reduced conversion losses down to 3-5 dB and a receiver noise temperature (DSB) down to 200-300 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes About LO power required Approved no  
  Call Number Serial 255  
Permanent link to this record
 

 
Author Karasik, B. S.; Milostnaya, I. I.; Zorin, M. A.; Elantev, A. I.; Gol'tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title High speed current switching of homogeneous YBaCuO film between superconducting and resistive states Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages (down) 3042-3045  
  Keywords YBCO HTS HEB switches  
  Abstract Transitions of thin structured YBaCuO films from superconducting (S) to normal (N) state and back induced by a supercritical current pulse has been studied. A subnanosecond stage in the film resistance dynamic has been observed. A more gradual (nanosecond) ramp in the time dependence of the resistance follows the fast stage. The fraction of the film resistance which is attained during the fast S-N stage rises with the current amplitude. Subnanosecond N-S switching is more pronounced for smaller amplitudes of driving current and for shorter pulses. The phenomena observed are viewed within the framework of an electron heating model. The expected switching time and repetition rate of an optimized current controlling device are estimated to be 1-2 ps and 80 GHz respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1620  
Permanent link to this record
 

 
Author Lindgren, M.; Trifonov, V.; Zorin, M.; Danerud, M.; Winkler, D.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E.M. url  doi
openurl 
  Title Transient resistive photoresponse of YBa2Cu3O7−δ films using low power 0.8 and 10.6 μm laser radiation Type Journal Article
  Year 1994 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 64 Issue 22 Pages (down) 3036-3038  
  Keywords YBCO HTS HEB, nonequilibrium  
  Abstract Thin YBa2Cu3O7−δ laser deposited films were patterned into devices consisting of ten parallel 1 μm wide strips. Nonequilibrium picosecond and bolometric photoresponses were studied by the use of 17 ps full width at half‐maximum laser pulses and amplitude modulated radiation from an AlGaAs laser up to 10 GHz and from a CO2 laser up to 1 GHz. The time and frequency domain measurements were in agreement. The fast response can be explained by electron heating. The use of low optical power and a sensitive measurement system excluded any nonlinear transient processes and kinetic inductance changes in the superconducting state. At 1 GHz modulation frequency, the responsivity was ∼1.2 V/W both for 0.8 and 10.6 μm wavelengths. The sensitivity of a fast and spectrally broadband infrared detector is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1639  
Permanent link to this record
 

 
Author Zorin, M.; Gol'tsman, G.N.; Karasik, B.S.; Elantev, A.I.; Gershenzon, E.M.; Lindgren, M.; Danerud, M.; Winkler, D. url  doi
openurl 
  Title Optical mixing in thin YBa2Cu3O7-x films Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages (down) 2431-2434  
  Keywords YBCO HTS HEB mixers  
  Abstract High quality, j/sub c/ (77 K)>10/sup 6/ A/cm/sup 2/, epitaxial YBa2Cu3O7-x films of 50 nm thickness were patterned into ten parallel 1 /spl mu/m wide strips. The film structure was coupled to a single-mode fiber. Mixer response was obtained at 0.78 /spl mu/m using laser frequency modulation and an optical delay line. Using two semiconductor lasers at 1.55 /spl mu/m wavelength the beating signal was used to measure the photoresponse up to 18 GHz. Nonequilibrium photoresponse in the resistive state of the superconductor was observed. Bolometric response dominates up to 3 GHz, after which the nonequilibrium response is constant up to the frequency limit of our registration system. Using an electron heating model the influence of different thermal processes on the conversion loss has been analyzed. Ways of increasing the sensitivity are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1619  
Permanent link to this record
 

 
Author Karasik, B. S.; Il'in, K. S.; Pechen, E. V.; Krasnosvobodtsev, S. I. url  doi
openurl 
  Title Diffusion cooling mechanism in a hot-electron NbC microbolometer mixer Type Journal Article
  Year 1996 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 68 Issue 16 Pages (down) 2285-2287  
  Keywords HEB mixer, diffusion cooling channel, diffusion channel  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 262  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: