toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baeva, E. M.; Titova, N. A.; Kardakova, A. I.; Piatrusha, S. U.; Khrapai, V. S. url  doi
openurl 
  Title Universal bottleneck for thermal relaxation in disordered metallic films Type Journal Article
  Year 2020 Publication (up) JETP Lett. Abbreviated Journal Jetp Lett.  
  Volume 111 Issue 2 Pages 104-108  
  Keywords NbN disordered metallic films, thermal relaxation  
  Abstract We study the heat relaxation in current biased metallic films in the regime of strong electron–phonon coupling. A thermal gradient in the direction normal to the film is predicted, with a spatial temperature profile determined by the temperature-dependent heat conduction. In the case of strong phonon scattering, the heat conduction occurs predominantly via the electronic system and the profile is parabolic. This regime leads to the linear dependence of the noise temperature as a function of bias voltage, in spite of the fact that all the dimensions of the film are large compared to the electron–phonon relaxation length. This is in stark contrast to the conventional scenario of relaxation limited by the electron–phonon scattering rate. A preliminary experimental study of a 200-nm-thick NbN film indicates the relevance of our model for materials used in superconducting nanowire single-photon detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-3640 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1164  
Permanent link to this record
 

 
Author Shurakov, A.; Mikhalev, P.; Mikhailov, D.; Mityashkin, V.; Tretyakov, I.; Kardakova, A.; Belikov, I.; Kaurova, N.; Voronov, B.; Vasil’evskii, I.; Gol’tsman, G. url  doi
openurl 
  Title Ti/Au/n-GaAs planar Schottky diode with a moderately Si-doped matching sublayer Type Journal Article
  Year 2018 Publication (up) Microelectronic Engineering Abbreviated Journal Microelectronic Engineering  
  Volume 195 Issue Pages 26-31  
  Keywords  
  Abstract In this paper, we report on the results of the study of the Ti/Au/n-GaAs planar Schottky diodes (PSD) intended for the wideband detection of terahertz radiation. The two types of the PSD devices were compared having either the dual n/n+ silicon dopant profile or the triple one with a moderately doped matching sublayer inserted. All the diodes demonstrated no noticeable temperature dependence of ideality factors and barrier heights, whose values covered the ranges of 1.15–1.50 and 0.75–0.85 eV, respectively. We observed the lowering of the flat band barrier height of ∼80 meV after introducing the matching sublayer into the GaAs sandwich. For both the devices types, the series resistance value as low as 20 Ω was obtained. To extract the total parasitic capacitance, we performed the Y-parameters analysis within the electromagnetic modeling of the PSD's behavior via the finite-element method. The capacitance values of 12–12.2 fF were obtained and further verified by measuring the diodes' response voltages in the frequency range of 400–480 GHz. We also calculated the AC current density distribution within the layered structures similar to those being experimentally studied. It was demonstrated that insertion of the moderately Si-doped matching sublayer might be beneficial for implementation of a PSD intended for the operation within the ‘super-THz’ frequency range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1155  
Permanent link to this record
 

 
Author Saveskul, N. A.; Titova, N. A.; Baeva, E. M.; Semenov, A. V.; Lubenchenko, A. V.; Saha, S.; Reddy, H.; Bogdanov, S. I.; Marinero, E. E.; Shalaev, V. M.; Boltasseva, A.; Khrapai, V. S.; Kardakova, A. I.; Goltsman, G. N. url  doi
openurl 
  Title Superconductivity behavior in epitaxial TiN films points to surface magnetic disorder Type Journal Article
  Year 2019 Publication (up) Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 12 Issue 5 Pages 054001  
  Keywords epitaxial TiN films  
  Abstract We analyze the evolution of the normal and superconducting properties of epitaxial TiN films, characterized by high Ioffe-Regel parameter values, as a function of the film thickness. As the film thickness decreases, we observe an increase of the residual resistivity, that becomes dominated by diffusive surface scattering for d≤20nm. At the same time, a substantial thickness-dependent reduction of the superconducting critical temperature is observed compared to the bulk TiN value. In such high-quality material films, this effect can be explained by a weak magnetic disorder residing in the surface layer with a characteristic magnetic defect density of approximately 1012cm−2. Our results suggest that surface magnetic disorder is generally present in oxidized TiN films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1166  
Permanent link to this record
 

 
Author Baeva, E. M.; Titova, N. A.; Veyrat, L.; Sacépé, B.; Semenov, A. V.; Goltsman, G. N.; Kardakova, A. I.; Khrapai, V. S. url  doi
openurl 
  Title Thermal relaxation in metal films limited by diffuson lattice excitations of amorphous substrates Type Journal Article
  Year 2021 Publication (up) Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 15 Issue 5 Pages 054014  
  Keywords InOx, Au/Ni, NbN films  
  Abstract We examine the role of a silicon-based amorphous insulating substrate in the thermal relaxation in thin NbN, InOx, and Au/Ni films at temperatures above 5 K. The samples studied consist of metal bridges on an amorphous insulating layer lying on or suspended above a crystalline substrate. Noise thermometry is used to measure the electron temperature Te of the films as a function of Joule power per unit area P2D. In all samples, we observe a P2D∝Tne dependence, with exponent n≃2, which is inconsistent with both electron-phonon coupling and Kapitza thermal resistance. In suspended samples, the functional dependence of P2D(Te) on the length of the amorphous insulating layer is consistent with the linear temperature dependence of the thermal conductivity, which is related to lattice excitations (diffusons) for a phonon mean free path shorter than the dominant phonon wavelength. Our findings are important for understanding the operation of devices embedded in amorphous dielectrics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1769  
Permanent link to this record
 

 
Author Kardakova, A.; Shishkin, A.; Semenov, A.; Goltsman, G. N.; Ryabchun, S.; Klapwijk, T. M.; Bousquet, J.; Eon, D.; Sacépé, B.; Klein, T.; Bustarret, E. url  doi
openurl 
  Title Relaxation of the resistive superconducting state in boron-doped diamond films Type Journal Article
  Year 2016 Publication (up) Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 93 Issue 6 Pages 064506  
  Keywords boron-doped diamond films, resistive superconducting state, relaxation time  
  Abstract We report a study of the relaxation time of the restoration of the resistive superconducting state in single crystalline boron-doped diamond using amplitude-modulated absorption of (sub-)THz radiation (AMAR). The films grown on an insulating diamond substrate have a low carrier density of about 2.5×1021cm−3 and a critical temperature of about 2K. By changing the modulation frequency we find a high-frequency rolloff which we associate with the characteristic time of energy relaxation between the electron and the phonon systems or the relaxation time for nonequilibrium superconductivity. Our main result is that the electron-phonon scattering time varies clearly as T−2, over the accessible temperature range of 1.7 to 2.2 K. In addition, we find, upon approaching the critical temperature Tc, evidence for an increasing relaxation time on both sides of Tc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1167  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: