Records |
Author |
Shurakov, A.; Seliverstov, S.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G. |
Title |
Input bandwidth of hot electron bolometer with spiral antenna |
Type |
Journal Article |
Year |
2012 |
Publication |
IEEE Trans. THz Sci. Technol. |
Abbreviated Journal  |
IEEE Trans. THz Sci. Technol. |
Volume |
2 |
Issue |
4 |
Pages |
400-405 |
Keywords |
NbN HEB bolometers bandwidth, log-spiral antenna |
Abstract |
We report the results of our study of the input bandwidth of hot electron bolometers (HEB) embedded into the planar log-spiral antenna. The sensitive element is made of the ultrathin superconducting NbN film patterned as a bridge at the feed of the antenna. The contacts between the antenna and a sensitive element are made from in situ deposited gold (i.e., deposited over NbN film without breaking vacuum), which gives high quality contacts and makes the response of the HEB at higher frequencies less affected by the RF loss. An accurate experimental spectroscopic procedure is demonstrated that leads to the confirmation of the wide ( 8 THz) bandwidth in this antenna coupled device. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2156-342X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1161 |
Permanent link to this record |
|
|
|
Author |
Milostnaya, I.; Korneev, A.; Tarkhov, M.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G. |
Title |
Superconducting single photon nanowire detectors development for IR and THz applications |
Type |
Journal Article |
Year |
2008 |
Publication |
J. Low Temp. Phys. |
Abbreviated Journal  |
J. Low Temp. Phys. |
Volume |
151 |
Issue |
1-2 |
Pages |
591-596 |
Keywords |
NbN SSPD, SNSPD |
Abstract |
We present our progress in the development of superconducting single-photon detectors (SSPDs) based on meander-shaped nanowires made from few-nm-thick superconducting films. The SSPDs are operated at a temperature of 2–4.2 K (well below T c ) being biased with a current very close to the nanowire critical current at the operation temperature. To date, the material of choice for SSPDs is niobium nitride (NbN). Developed NbN SSPDs are capable of single photon counting in the range from VIS to mid-IR (up to 6 μm) with a record low dark counts rate and record-high counting rate. The use of a material with a low transition temperature should shift the detectors sensitivity towards longer wavelengths. We present state-of-the art NbN SSPDs as well as the results of our recent approach to expand the developed SSPD technology by the use of superconducting materials with lower T c , such as molybdenum rhenium (MoRe). MoRe SSPDs first were made and tested; a single photon response was obtained. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-2291 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1244 |
Permanent link to this record |
|
|
|
Author |
Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G. |
Title |
Ultrafast superconducting single-photon detector |
Type |
Journal Article |
Year |
2009 |
Publication |
J. Modern Opt. |
Abbreviated Journal  |
J. Modern Opt. |
Volume |
56 |
Issue |
15 |
Pages |
1670-1680 |
Keywords |
SSPD, SNSPD |
Abstract |
The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0950-0340 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ akorneev @ |
Serial |
607 |
Permanent link to this record |
|
|
|
Author |
Marsili, F.; Bitauld, D.; Fiore, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Goltsman, G. |
Title |
Superconducting parallel nanowire detector with photon number resolving functionality |
Type |
Journal Article |
Year |
2009 |
Publication |
J. Modern Opt. |
Abbreviated Journal  |
J. Modern Opt. |
Volume |
56 |
Issue |
2-3 |
Pages |
334-344 |
Keywords |
PNR; SSPD; SNSPD; thin superconducting films; photon number resolving detector; multiplication noise; telecom wavelength; NbN |
Abstract |
We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0950-0340 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ gujma @ |
Serial |
701 |
Permanent link to this record |
|
|
|
Author |
Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N. |
Title |
The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer |
Type |
Journal Article |
Year |
2003 |
Publication |
J. of communications technol. & electronics |
Abbreviated Journal  |
J. of communications technol. & electronics |
Volume |
48 |
Issue |
6 |
Pages |
671-675 |
Keywords |
NbN HEB mixers |
Abstract |
Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
MAIK Nauka/Interperiodica, Birmingham, AL |
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1064-2269 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) |
Approved |
no |
Call Number |
Vakhtomin2003 |
Serial |
1522 |
Permanent link to this record |