toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jiang, Ling; Miao, Wei; Zhang, Wen; Li, Ning; Lin, Zhen Hui; Yao, Qi Jun; Shi, Sheng-Cai; Svechnikov, S. I.; Vakhtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N. url  doi
openurl 
  Title Characterization of a quasi-optical NbN superconducting HEB mixer Type Journal Article
  Year 2006 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.  
  Volume 54 Issue 7 Pages 2944-2948  
  Keywords NbN HEB mixers  
  Abstract (up) In this paper, the performance of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer, cryogenically cooled by a close-cycled 4-K refrigerator, is thoroughly investigated at 300, 500, and 850 GHz. The lowest receiver noise temperatures measured at the respective three frequencies are 1400, 900, and 1350 K, which can go down to 659, 413, and 529 K, respectively, after correcting the loss and associated noise contribution of the quasi-optical system before the measured superconducting HEB mixer. The stability of the quasi-optical superconducting HEB mixer is also investigated here. The Allan variance time measured with a local oscillator pumping at 500 GHz and an IF bandwidth of 110 MHz is 1.5 s at the dc-bias voltage exhibiting the lowest noise temperature and increases to 2.5 s at a dc bias twice that voltage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1448  
Permanent link to this record
 

 
Author Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Study of the IF bandwidth of NbN HEB mixers based on crystalline quartz substrate with an MgO buffer layer Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 13 Issue 2 Pages 164-167  
  Keywords NbN HEB mixer  
  Abstract (up) In this paper, we present the results of IF bandwidth measurements on 3-4 nm thick NbN hot electron bolometer waveguide mixers, which have been fabricated on a 200-nm thick MgO buffer layer deposited on a crystalline quartz substrate. The 3-dB IF bandwidth, measured at an LO frequency of 0.81 THz, is 3.7 GHz at the optimal bias point for low noise receiver operation. We have also made measurements of the IF dynamic impedance, which allow us to evaluate the intrinsic electron temperature relaxation time and self-heating parameters at different bias conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 341  
Permanent link to this record
 

 
Author Shurakov, A.; Mikhalev, P.; Mikhailov, D.; Mityashkin, V.; Tretyakov, I.; Kardakova, A.; Belikov, I.; Kaurova, N.; Voronov, B.; Vasil’evskii, I.; Gol’tsman, G. url  doi
openurl 
  Title Ti/Au/n-GaAs planar Schottky diode with a moderately Si-doped matching sublayer Type Journal Article
  Year 2018 Publication Microelectronic Engineering Abbreviated Journal Microelectronic Engineering  
  Volume 195 Issue Pages 26-31  
  Keywords  
  Abstract (up) In this paper, we report on the results of the study of the Ti/Au/n-GaAs planar Schottky diodes (PSD) intended for the wideband detection of terahertz radiation. The two types of the PSD devices were compared having either the dual n/n+ silicon dopant profile or the triple one with a moderately doped matching sublayer inserted. All the diodes demonstrated no noticeable temperature dependence of ideality factors and barrier heights, whose values covered the ranges of 1.15–1.50 and 0.75–0.85 eV, respectively. We observed the lowering of the flat band barrier height of ∼80 meV after introducing the matching sublayer into the GaAs sandwich. For both the devices types, the series resistance value as low as 20 Ω was obtained. To extract the total parasitic capacitance, we performed the Y-parameters analysis within the electromagnetic modeling of the PSD's behavior via the finite-element method. The capacitance values of 12–12.2 fF were obtained and further verified by measuring the diodes' response voltages in the frequency range of 400–480 GHz. We also calculated the AC current density distribution within the layered structures similar to those being experimentally studied. It was demonstrated that insertion of the moderately Si-doped matching sublayer might be beneficial for implementation of a PSD intended for the operation within the ‘super-THz’ frequency range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1155  
Permanent link to this record
 

 
Author Jiang, L.; Zhang, W.; Yao, Q. J.; Lin, Z. H.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N. url  doi
openurl 
  Title Characterization of a quasi-optical NbN superconducting hot-electron bolometer mixer Type Conference Article
  Year 2005 Publication Proc. PIERS Abbreviated Journal Proc. PIERS  
  Volume 1 Issue 5 Pages 587-590  
  Keywords NbN HEB mixers  
  Abstract (up) In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolome-ter) mixer measured at 500 GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled bya 4-K close-cycled refrigerator. Its receiver noise temperature and conversion gain are thoroughly investigatedfor different LO pumping levels and dc biases. The lowest receiver noise temperature is found to be approxi-mately 1200 K, and reduced to about 445 K after correcting theloss of the measurement system. The stabilityof the mixer’s IF output power is also demonstrated.  
  Address Hangzhou, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-7360 ISBN Medium  
  Area Expedition Conference Progress In Electromagnetics Research Symposium  
  Notes Approved no  
  Call Number Serial 1482  
Permanent link to this record
 

 
Author Zhang, W.; Jiang, L.; Lin, Z. H.; Yao, Q. J.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Yu. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N. url  openurl
  Title Development of a quasi-optical NbN superconducting HEB mixer Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 209-213  
  Keywords NbN HEB mixers  
  Abstract (up) In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolometer) mixer measured at 500 and 850GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled by a 4-K close-cycled refrigerator. Measured receiver noise temperature at 850 and 500GHz are 3000K and 2500K respectively with wire grid as beamsplitter, while the lowest receiver noise temperature is found to be approximately 1200K with Mylar film. The theoretical receiver noise temperature (taking into account the elliptical polarization of log-spiral antenna) is consistent with measured one. The receiver noise temperature and conversion gain with 15-μm Mylar film as the beamsplitter at 500GHz are thoroughly investigated for different LO pumping levels and dc biases. The stability of the mixer’s IF output power is also demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1470  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: