Records |
Author  |
Korneev, A.; Minaeva, O.; Divochiy, A.; Antipov, A.; Kaurova, N.; Seleznev, V.; Voronov, B.; Gol’tsman, G.; Pan, D.; Kitaygorsky, J.; Slysz, W.; Sobolewski, R. |
Title |
Ultrafast and high quantum efficiency large-area superconducting single-photon detectors |
Type |
Conference Article |
Year |
2007 |
Publication |
Proc. SPIE |
Abbreviated Journal |
Proc. SPIE |
Volume |
6583 |
Issue |
|
Pages |
65830I (1 to 9) |
Keywords |
SSPD, SNSPD, superconducting NbN films, infrared single-photon detectors |
Abstract |
We present our latest generation of superconducting single-photon detectors (SSPDs) patterned from 4-nm-thick NbN films, as meander-shaped 0.5-mm-long and 100-nm-wide stripes. The SSPDs exhibit excellent performance parameters in the visible-to-near-infrared radiation wavelengths: quantum efficiency (QE) of our best devices approaches a saturation level of 30% even at 4.2 K (limited by the NbN film optical absorption) and dark counts as low as 2x10-4 Hz. The presented SSPDs were designed to maintain the QE of large-active-area devices, but, unless our earlier SSPDs, hampered by a significant kinetic inductance and a nanosecond response time, they are characterized by a low inductance and GHz counting rates. We have designed, simulated, and tested the structures consisting of several, connected in parallel, meander sections, each having a resistor connected in series. Such new, multi-element geometry led to a significant decrease of the device kinetic inductance without the decrease of its active area and QE. The presented improvement in the SSPD performance makes our detectors most attractive for high-speed quantum communications and quantum cryptography applications. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Spie |
Place of Publication |
|
Editor |
Dusek, M.; Hillery, M.S.; Schleich, W.P.; Prochazka, I.; Migdall, A.L.; Pauchard, A. |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1249 |
Permanent link to this record |
|
|
|
Author  |
Korneeva, Y.; Florya, I.; Vdovichev, S.; Moshkova, M.; Simonov, N.; Kaurova, N.; Korneev, A.; Goltsman, G. |
Title |
Comparison of hot spot formation in nbn and mon thin superconducting films after photon absorption |
Type |
Journal Article |
Year |
2017 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
27 |
Issue |
4 |
Pages |
1-4 |
Keywords |
MoNx SSPD |
Abstract |
In superconducting single-photon detectors (SSPD), the efficiency of local suppression of superconductivity and hotspot formation is controlled by diffusivity and electron-phonon interaction time. Here, we selected a material, 3.6-nm-thick MoNx film, which features diffusivity close to those of NbN traditionally used for SSPD fabrication, but with electron-phonon interaction time an order of magnitude larger. In MoN ∞ detectors, we study the dependence of detection efficiency on bias current, photon energy, and strip width, and compare it with NbN SSPD. We observe nonlinear current-energy dependence in MoNx SSPD and more pronounced plateaus in dependences of detection efficiency on bias current, which we attribute to longer electron-phonon interaction time. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1051-8223 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1325 |
Permanent link to this record |
|
|
|
Author  |
Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Shcherbatenko, M.; Lobanov, Y.; Ozhegov, R.; Korneev, A.; Kaurova, N.; Voronov, B.; Pernice, W.; Gol'tsman, G. |
Title |
On-chip coherent detection with quantum limited sensitivity |
Type |
Journal Article |
Year |
2017 |
Publication |
Sci Rep |
Abbreviated Journal |
Sci Rep |
Volume |
7 |
Issue |
1 |
Pages |
4812 |
Keywords |
waveguide, SSPD, SNSPD |
Abstract |
While single photon detectors provide superior intensity sensitivity, spectral resolution is usually lost after the detection event. Yet for applications in low signal infrared spectroscopy recovering information about the photon's frequency contributions is essential. Here we use highly efficient waveguide integrated superconducting single-photon detectors for on-chip coherent detection. In a single nanophotonic device, we demonstrate both single-photon counting with up to 86% on-chip detection efficiency, as well as heterodyne coherent detection with spectral resolution f/f exceeding 10(11). By mixing a local oscillator with the single photon signal field, we observe frequency modulation at the intermediate frequency with ultra-low local oscillator power in the femto-Watt range. By optimizing the nanowire geometry and the working parameters of the detection scheme, we reach quantum-limited sensitivity. Our approach enables to realize matrix integrated heterodyne nanophotonic devices in the C-band wavelength range, for classical and quantum optics applications where single-photon counting as well as high spectral resolution are required simultaneously. |
Address |
National Research University Higher School of Economics, Moscow, 101000, Russia. ggoltsman@hse.ru |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2045-2322 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:28684752; PMCID:PMC5500578 |
Approved |
no |
Call Number |
RPLAB @ kovalyuk @ |
Serial |
1129 |
Permanent link to this record |
|
|
|
Author  |
Kovalyuk, V.; Hartmann, W.; Kahl, O.; Kaurova, N.; Korneev, A.; Goltsman, G.; Pernice, W. H. P. |
Title |
Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits |
Type |
Journal Article |
Year |
2013 |
Publication |
Opt. Express |
Abbreviated Journal |
Opt. Express |
Volume |
21 |
Issue |
19 |
Pages |
22683-22692 |
Keywords |
SSPD, SNSPD, NbN nanoeires, Si3N4 waveguides |
Abstract |
We investigate the absorption properties of U-shaped niobium nitride (NbN) nanowires atop nanophotonic circuits. Nanowires as narrow as 20nm are realized in direct contact with Si3N4 waveguides and their absorption properties are extracted through balanced measurements. We perform a full characterization of the absorption coefficient in dependence of length, width and separation of the fabricated nanowires, as well as for waveguides with different cross-section and etch depth. Our results show excellent agreement with finite-element analysis simulations for all considered parameters. The experimental data thus allows for optimizing absorption properties of emerging single-photon detectors co-integrated with telecom wavelength optical circuits. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1094-4087 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:24104155 |
Approved |
no |
Call Number |
|
Serial |
1213 |
Permanent link to this record |
|
|
|
Author  |
Lobanov, Y.; Shcherbatenko, M.; Semenov, A.; Kovalyuk, V.; Kahl, O.; Ferrari, S.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B. M.; Pernice, W. H. P.; Gol'tsman, G. N. |
Title |
Superconducting nanowire single photon detector for coherent detection of weak signals |
Type |
Journal Article |
Year |
2017 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
27 |
Issue |
4 |
Pages |
1-5 |
Keywords |
NbN SSPD mixer, SNSPD, nanophotonic waveguide |
Abstract |
Traditional photon detectors are operated in the direct detection mode, counting incident photons with a known quantum efficiency. Here, we have investigated a superconducting nanowire single photon detector (SNSPD) operated as a photon counting mixer at telecommunication wavelength around 1.5 μm. This regime of operation combines excellent sensitivity of a photon counting detector with excellent spectral resolution given by the heterodyne technique. Advantageously, we have found that low local oscillator (LO) power of the order of hundreds of femtowatts to a few picowatts is sufficient for clear observation of the incident test signal with the sensitivity approaching the quantum limit. With further optimization, the required LO power could be significantly reduced, which is promising for many practical applications, such as the development of receiver matrices or recording ultralow signals at a level of less-than-one-photon per second. In addition to a traditional NbN-based SNSPD operated with normal incidence coupling, we also use detectors with a travelling wave geometry, where a NbN nanowire is placed on the top of a Si 3 N 4 nanophotonic waveguide. This approach is fully scalable and a large number of devices could be integrated on a single chip. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1051-8223 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1206 |
Permanent link to this record |