|   | 
Details
   web
Records
Author Korneev, A.; Divochiy, A.; Marsili, F.; Bitauld, D.; Fiore, A.; Seleznev, V.; Kaurova, N.; Tarkhov, M.; Minaeva, O.; Chulkova, G.; Smirnov, K.; Gaggero, A.; Leoni, R.; Mattioli, F.; Lagoudakis, K.; Benkhaoul, M.; Levy, F.; Goltsman, G.
Title Superconducting photon number resolving counter for near infrared applications Type Conference Article
Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7138 Issue Pages 713828 (1 to 5)
Keywords PNR SSPD; SNSPD; Nanowire superconducting single-photon detector, ultrathin NbN film, infrared
Abstract We present a novel concept of photon number resolving detector based on 120-nm-wide superconducting stripes made of 4-nm-thick NbN film and connected in parallel (PNR-SSPD). The detector consisting of 5 strips demonstrate a capability to resolve up to 4 photons absorbed simultaneously with the single-photon quantum efficiency of 2.5% and negligibly low dark count rate.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor (down) Tománek, P.; Senderáková, D.; Hrabovský, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1117/12.818079 Serial 1241
Permanent link to this record
 

 
Author Sobolewski, R.; Zhang, J.; Slysz, W.; Pearlman, A.; Verevkin, A.; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Drakinsky, V.; Goltsman, G. N.
Title Ultrafast superconducting single-photon optical detectors Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5123 Issue Pages 1-11
Keywords NbN SSPD, SNSPD
Abstract We present a new class of single-photon devices for counting of both visible and infrared photons. Our superconducting single-photon detectors (SSPDs) are characterized by the intrinsic quantum efficiency (QE) reaching up to 100%, above 10 GHz counting rate, and negligible dark counts. The detection mechanism is based on the photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconducting stripe. The devices are fabricated from 3.5-nm-thick NbN films and operate at 4.2 K, well below the NbN superconducting transition temperature. Various continuous and pulsed laser sources in the wavelength range from 0.4 μm up to >3 μm were implemented in our experiments, enabling us to determine the detector QE in the photon-counting mode, response time, and jitter. For our best 3.5-nm-thick, 10×10 μm2-area devices, QE was found to reach almost 100% for any wavelength shorter than about 800 nm. For longer-wavelength (infrared) radiation, QE decreased exponentially with the photon wavelength increase. Time-resolved measurements of our SSPDs showed that the system-limited detector response pulse width was below 150 ps. The system jitter was measured to be 35 ps. In terms of the counting rate, jitter, and dark counts, the NbN SSPDs significantly outperform their semiconductor counterparts. Already identifeid and implemented applications of our devices range from noninvasive testing of semiconductor VLSI circuits to free-space quantum communications and quantum cryptography.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor (down) Spigulis, J.; Teteris, J.; Ozolinsh, M.; Lusis, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Advanced Optical Devices, Technologies, and Medical Applications
Notes Approved no
Call Number Serial 1513
Permanent link to this record
 

 
Author Shcherbatenko, M.; Lobanov, Y.; Semenov, A.; Kovalyuk, V.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B.; Goltsman, G.
Title Coherent detection of weak signals with superconducting nanowire single photon detector at the telecommunication wavelength Type Conference Article
Year 2017 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 10229 Issue Pages 0G (1 to 12)
Keywords SSPD mixer, SNSPD, coherent detection, weak signal detection, superconducting nanostructures
Abstract Achievement of the ultimate sensitivity along with a high spectral resolution is one of the frequently addressed problems, as the complication of the applied and fundamental scientific tasks being explored is growing up gradually. In our work, we have investigated performance of a superconducting nanowire photon-counting detector operating in the coherent mode for detection of weak signals at the telecommunication wavelength. Quantum-noise limited sensitivity of the detector was ensured by the nature of the photon-counting detection and restricted by the quantum efficiency of the detector only. Spectral resolution given by the heterodyne technique and was defined by the linewidth and stability of the Local Oscillator (LO). Response bandwidth was found to coincide with the detector’s pulse width, which, in turn, could be controlled by the nanowire length. In addition, the system noise bandwidth was shown to be governed by the electronics/lab equipment, and the detector noise bandwidth is predicted to depend on its jitter. As have been demonstrated, a very small amount of the LO power (of the order of a few picowatts down to hundreds of femtowatts) was required for sufficient detection of the test signal, and eventual optimization could lead to further reduction of the LO power required, which would perfectly suit for the foreseen development of receiver matrices and the need for detection of ultra-low signals at a level of less-than-one-photon per second.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor (down) Prochazka, I.; Sobolewski, R.; James, R.B.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Photon counting applications
Notes Approved no
Call Number 10.1117/12.2267724 Serial 1201
Permanent link to this record
 

 
Author Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G.
Title The sensitivity and IF bandwidth of waveguide NbN hot electron bolometer mixers on MgO buffer layers over crystalline quartz Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 65-72
Keywords waveguide NbN HEB mixers
Abstract We have developed and characterized waveguide phonon-cooled NbN Hot Electron Bolometer (FMB) mixers fabricated from a 3-4 nm thick NbN film deposited on a 200nm thick MgO buffer layer over crystalline quartz. Double side band receiver noise temperatures of 900-1050 K at 1.035 THz, and 1300-1400 K at 1.26 THz have been measured at an intermediate frequency of 1.5 GHz. The intermediate frequency bandwidth, measured at 0.8 THz LO frequency, is 3.2 GHz at the optimal bias point for low noise receiver operation.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, MA, USA Editor (down) Harvard university
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 326
Permanent link to this record
 

 
Author Korneev, A.; Minaeva, O.; Divochiy, A.; Antipov, A.; Kaurova, N.; Seleznev, V.; Voronov, B.; Gol’tsman, G.; Pan, D.; Kitaygorsky, J.; Slysz, W.; Sobolewski, R.
Title Ultrafast and high quantum efficiency large-area superconducting single-photon detectors Type Conference Article
Year 2007 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6583 Issue Pages 65830I (1 to 9)
Keywords SSPD, SNSPD, superconducting NbN films, infrared single-photon detectors
Abstract We present our latest generation of superconducting single-photon detectors (SSPDs) patterned from 4-nm-thick NbN films, as meander-shaped  0.5-mm-long and  100-nm-wide stripes. The SSPDs exhibit excellent performance parameters in the visible-to-near-infrared radiation wavelengths: quantum efficiency (QE) of our best devices approaches a saturation level of  30% even at 4.2 K (limited by the NbN film optical absorption) and dark counts as low as 2x10-4 Hz. The presented SSPDs were designed to maintain the QE of large-active-area devices, but, unless our earlier SSPDs, hampered by a significant kinetic inductance and a nanosecond response time, they are characterized by a low inductance and GHz counting rates. We have designed, simulated, and tested the structures consisting of several, connected in parallel, meander sections, each having a resistor connected in series. Such new, multi-element geometry led to a significant decrease of the device kinetic inductance without the decrease of its active area and QE. The presented improvement in the SSPD performance makes our detectors most attractive for high-speed quantum communications and quantum cryptography applications.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor (down) Dusek, M.; Hillery, M.S.; Schleich, W.P.; Prochazka, I.; Migdall, A.L.; Pauchard, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1249
Permanent link to this record