Records |
Author |
Gol'tsman, G.; Minaeva, O.; Korneev, A.; Tarkhov, M.; Rubtsova, I.; Divochiy, A.; Milostnaya, I.; Chulkova, G.; Kaurova, N.; Voronov, B.; Pan, D.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Komissarov, I.; Slysz, W.; Wegrzecki, M.; Grabiec, P.; Sobolewski, R. |
Title |
Middle-infrared to visible-light ultrafast superconducting single-photon detectors |
Type |
Journal Article |
Year |
2007 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
17 |
Issue |
2 |
Pages |
246-251 |
Keywords |
SSPD, SNSPD |
Abstract |
We present an overview of the state-of-the-art of NbN superconducting single-photon detectors (SSPDs). Our devices exhibit quantum efficiency (QE) of up to 30% in near-infrared wavelength and 0.4% at 5 mum, with a dark-count rate that can be as low as 10 -4 s -1 . The SSPD structures integrated with lambda/4 microcavities achieve a QE of 60% at telecommunication, 1550-nm wavelength. We have also developed a new generation of SSPDs that possess the QE of large-active-area devices, but, simultaneously, are characterized by low kinetic inductance that allows achieving short response times and the GHz-counting rate with picosecond timing jitter. The improvements presented in the SSPD development, such as fiber-coupled SSPDs, make our detectors most attractive for high-speed quantum communications and quantum computing. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor  |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1051-8223 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
431 |
Permanent link to this record |
|
|
|
Author |
Ryabchun, S. A.; Tretyakov, I. V.; Finkel, M. I.; Maslennikov, S. N.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G. N. |
Title |
NbN phonon-cooled hot-electron bolometer mixer with additional diffusion cooling |
Type |
Conference Article |
Year |
2009 |
Publication |
Proc. 20th Int. Symp. Space Terahertz Technol. |
Abbreviated Journal |
Proc. 20th ISSTT |
Volume |
|
Issue |
|
Pages |
151-154 |
Keywords |
HEB, mixer, bandwidth, noise temperatue, in-situ contacts, in situ contacts |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
Charlottesville, USA |
Editor  |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
590 |
Permanent link to this record |
|
|
|
Author |
Tretyakov, I. V.; Ryabchun, S. A.; Maslennikov, S. N.; Finkel, M. I.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G.N. |
Title |
NbN HEB mixer: fabrication, noise temperature reduction and characterization |
Type |
Conference Article |
Year |
2008 |
Publication |
Proc. Basic problems of superconductivity |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
HEB, mixer, noise temperature, conversion gain bandwidth |
Abstract |
We demonstrate that in the terahertz region superconducting hot-electron mixers offer the lowest noise temperature, opening the possibility of using HTS's in the future to fabricate these devices. Specifically, a noise temperature of 950 K was measured for the receiver operating at 2.5 THz with a NbN HEB mixer, and a gain bandwidth of 6 GHz was measured at 300 GHz near Tc for the same mixer. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
Moscow-Zvenigorod |
Editor  |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
591 |
Permanent link to this record |
|
|
|
Author |
Ryabchun, S. A.; Tretyakov, I. V.; Pentin, I. V.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N. |
Title |
Low-noise wide-band hot-electron bolometer mixer based on an NbN film |
Type |
Journal Article |
Year |
2009 |
Publication |
Radiophys. Quant. Electron. |
Abbreviated Journal |
|
Volume |
52 |
Issue |
8 |
Pages |
576-582 |
Keywords |
HEB mixer, in-situ contacts, noise temperature, conversion gain bandwidth, diffusion cooling channel |
Abstract |
We develop and study a hot-electron bolometer mixer made of a two-layer NbN–Au film in situ deposited on a silicon substrate. The double-sideband noise temperature of the mixer is 750 K at a frequency of 2.5 THz. The conversion efficiency measurements show that at the superconducting transition temperature, the intermediate-frequency bandwidth amounts to about 6.5 GHz for a mixer 0.112 μm long. These record-breaking characteristics are attributed to the improved contacts between a sensitive element and a helical antenna and are reached due to using the in situ deposition of NbN and Au layers at certain stages of the process. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor  |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
599 |
Permanent link to this record |
|
|
|
Author |
Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G. |
Title |
Ultrafast superconducting single-photon detector |
Type |
Journal Article |
Year |
2009 |
Publication |
J. Modern Opt. |
Abbreviated Journal |
J. Modern Opt. |
Volume |
56 |
Issue |
15 |
Pages |
1670-1680 |
Keywords |
SSPD, SNSPD |
Abstract |
The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor  |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0950-0340 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ akorneev @ |
Serial |
607 |
Permanent link to this record |