Records |
Author |
Tretyakov, Ivan; Kaurova, N.; Voronov, B. M.; Goltsman, G. N. |
Title  |
About effect of the temperature operating conditions on the noise temperature and noise bandwidth of the terahertz range NbN hot-electron bolometers |
Type |
Abstract |
Year |
2018 |
Publication |
Proc. 29th Int. Symp. Space Terahertz Technol. |
Abbreviated Journal |
Proc. 29th Int. Symp. Space Terahertz Technol. |
Volume |
|
Issue |
|
Pages |
113 |
Keywords |
NbN HEB mixer |
Abstract |
Results of an experimental study of the noise temperature (Tn) and noise bandwidth (NBW) of the superconductor NbN hot-electron bolometer (HEB) mixer as a function of its temperature (Tb) and NbN bridge length are presented. It was determined that the NBW of the mixer is significantly wider at temperatures close to the critical ones (Tc) than are values measured at 4.2 K. The NBW of the mixer measured at the heterodyne frequency of 2.5 THz at temperature Tb close to Tc was ~13 GHz, as compared with 6 GHz at Tb = 4.2 K. This experiment clearly demonstrates the limitation of the thermal flow from the NbN bridge at Tb ≪ Tc for mixers manufactured by the in situ technique. This limitation is close in its nature to the Andreev reflection on the superconductor/metal boundary. In this case, the noise temperature of the studied mixer increased from 1100 to 3800 K. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1313 |
Permanent link to this record |
|
|
|
Author |
Kovalyuk, V.; Hartmann, W.; Kahl, O.; Kaurova, N.; Korneev, A.; Goltsman, G.; Pernice, W. H. P. |
Title  |
Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits |
Type |
Journal Article |
Year |
2013 |
Publication |
Opt. Express |
Abbreviated Journal |
Opt. Express |
Volume |
21 |
Issue |
19 |
Pages |
22683-22692 |
Keywords |
SSPD, SNSPD, NbN nanoeires, Si3N4 waveguides |
Abstract |
We investigate the absorption properties of U-shaped niobium nitride (NbN) nanowires atop nanophotonic circuits. Nanowires as narrow as 20nm are realized in direct contact with Si3N4 waveguides and their absorption properties are extracted through balanced measurements. We perform a full characterization of the absorption coefficient in dependence of length, width and separation of the fabricated nanowires, as well as for waveguides with different cross-section and etch depth. Our results show excellent agreement with finite-element analysis simulations for all considered parameters. The experimental data thus allows for optimizing absorption properties of emerging single-photon detectors co-integrated with telecom wavelength optical circuits. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1094-4087 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:24104155 |
Approved |
no |
Call Number |
|
Serial |
1213 |
Permanent link to this record |
|
|
|
Author |
Tretyakov, I.; Svyatodukh, S.; Perepelitsa, A.; Ryabchun, S.; Kaurova, N.; Shurakov, A.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G. |
Title  |
Ag2S QDs/Si heterostructure-based ultrasensitive SWIR range detector |
Type |
Journal Article |
Year |
2020 |
Publication |
Nanomaterials (Basel) |
Abbreviated Journal |
Nanomaterials (Basel) |
Volume |
10 |
Issue |
5 |
Pages |
1-12 |
Keywords |
detector; quantum dots; short-wave infrared range; silicon |
Abstract |
In the 20(th) century, microelectronics was revolutionized by silicon-its semiconducting properties finally made it possible to reduce the size of electronic components to a few nanometers. The ability to control the semiconducting properties of Si on the nanometer scale promises a breakthrough in the development of Si-based technologies. In this paper, we present the results of our experimental studies of the photovoltaic effect in Ag2S QD/Si heterostructures in the short-wave infrared range. At room temperature, the Ag2S/Si heterostructures offer a noise-equivalent power of 1.1 x 10(-10) W/ radicalHz. The spectral analysis of the photoresponse of the Ag2S/Si heterostructures has made it possible to identify two main mechanisms behind it: the absorption of IR radiation by defects in the crystalline structure of the Ag2S QDs or by quantum QD-induced surface states in Si. This study has demonstrated an effective and low-cost way to create a sensitive room temperature SWIR photodetector which would be compatible with the Si complementary metal oxide semiconductor technology. |
Address |
Laboratory of nonlinear optics, Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, Kazan 420029, Russia |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2079-4991 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:32365694; PMCID:PMC7712218 |
Approved |
no |
Call Number |
|
Serial |
1151 |
Permanent link to this record |
|
|
|
Author |
Loudkov, D.; Tong, C.-Y. E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol’tsman, G. |
Title  |
An investigation of the performance of the superconducting HEB mixer as a function of its RF embedding impedance |
Type |
Journal Article |
Year |
2005 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
15 |
Issue |
2 |
Pages |
472-475 |
Keywords |
waveguide NbN HEB mixers |
Abstract |
We have conducted an investigation of the optimal embedding impedance for a waveguide superconducting hot-electron bolometric (HEB) mixer. Three mixer chip designs for 800 GHz, offering nominal embedding resistances of 70 /spl Omega/, 35 /spl Omega/, and 15 /spl Omega/, have been developed. We used both High Frequency Structure Simulator (HFSS) software and scale model impedance measurements in the design process. We subsequently fabricated HEB mixers to these designs using 3-4 nm thick NbN thin film. Receiver noise temperature measurements and Fourier Transform Spectrometer (FTS) scans were performed to determine the optimal combination of embedding impedance and normal-state resistance for a 50 Ohm IF load impedance. A receiver noise temperature of 440 K was measured at a local oscillator frequency 850 GHz for a mixer with normal state resistance of 62 /spl Omega/ incorporated into a circuit offering a nominal embedding impedance of 70 /spl Omega/. We conclude from our data that, for low noise operation, the normal state resistance of the HEB mixer element should be close to the embedding impedance of the mixer mount. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
1439677 |
Serial |
1464 |
Permanent link to this record |
|
|
|
Author |
Loudkov, D.; Tong, C. Y. E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol'tsman, G. |
Title  |
An investigation of the performance of the superconducting HEB슠mixer as a function of its RF슠embedding impedance |
Type |
Journal Article |
Year |
2005 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
|
Volume |
15 |
Issue |
2 |
Pages |
472-475 |
Keywords |
HEB mixer |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
IEEE |
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
371 |
Permanent link to this record |