|   | 
Details
   web
Records
Author Fedorov, G.; Gayduchenko, I.; Titova, N.; Gazaliev, A.; Moskotin, M.; Kaurova, N.; Voronov, B.; Goltsman, G.
Title Carbon nanotube based schottky diodes as uncooled terahertz radiation detectors Type Journal Article
Year 2018 Publication Phys. Status Solidi B Abbreviated Journal Phys. Status Solidi B
Volume (up) 255 Issue 1 Pages 1700227 (1 to 6)
Keywords carbon nanotube schottky diodes, CNT
Abstract Despite the intensive development of the terahertz technologies in the last decade, there is still a shortage of efficient room‐temperature radiation detectors. Carbon nanotubes (CNTs) are considered as a very promising material possessing many of the features peculiar for graphene (suppression of backscattering, high mobility, etc.) combined with a bandgap in the carrier spectrum. In this paper, we investigate the possibility to incorporate individual CNTs into devices that are similar to Schottky diodes. The latter is currently used to detect radiation with a frequency up to 50 GHz. We report results obtained with semiconducting (bandgap of about 0.5 eV) and quasi‐metallic (bandgap of few meV) single‐walled carbon nanotubes (SWNTs). Semiconducting CNTs show better performance up to 300 GHz with responsivity up to 100 V W−1, while quasi‐metallic CNTs are shown to operate up to 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1321
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Izbenko, V.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, R.
Title Nano-structured superconducting single-photon detectors Type Journal Article
Year 2004 Publication Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Abbreviated Journal
Volume (up) 520 Issue 1-3 Pages 527-529
Keywords NbN SSPD, SNSPD
Abstract NbN detectors, formed into meander-type, 10×10-μm2 area structures, based on ultrathin (down to 3.5-nm thickness) and nanometer-width (down to below 100 nm) NbN films are capable of efficiently detecting and counting single photons from the ultraviolet to near-infrared optical wavelength range. Our best devices exhibit QE >15% in the visible range and ∼10% in the 1.3–1.5-μm infrared telecommunication window. The noise equivalent power (NEP) ranges from ∼10−17 W/Hz1/2 at 1.5 μm radiation to ∼10−19 W/Hz1/2 at 0.56 μm, and the dark counts are over two orders of magnitude lower than in any semiconducting competitors. The intrinsic response time is estimated to be <30 ps. Such ultrafast detector response enables a very high, GHz-rate real-time counting of single photons. Already established applications of NbN photon counters are non-invasive testing and debugging of VLSI Si CMOS circuits and quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1495
Permanent link to this record
 

 
Author Seliverstov, S. V.; Rusova, A. A.; Kaurova, N. S.; Voronov, B. M.; Goltsman, G. N.
Title Attojoule energy resolution of direct detector based on hot electron bolometer Type Conference Article
Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume (up) 741 Issue Pages 012165 (1 to 5)
Keywords NbN HEB detector
Abstract We characterize superconducting antenna-coupled NbN hot-electron bolometer (HEB) for direct detection of THz radiation operating at a temperature of 9.0 K. At signal frequency of 2.5 THz, the measured value of the optical noise equivalent power is 2.0×10-13 W-Hz-0.5. The estimated value of the energy resolution is about 1.5 aJ. This value was confirmed in the experiment with pulsed 1.55-μm laser employed as a radiation source. The directly measured detector energy resolution is 2 aJ. The obtained risetime of pulses from the detector is 130 ps. This value was determined by the properties of the RF line. These characteristics make our detector a device-of-choice for a number of practical applications associated with detection of short THz pulses.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Seliverstov_2016 Serial 1337
Permanent link to this record
 

 
Author Gol'tsman, G.; Maslennikov, S.; Finkel, M.; Antipov, S.; Kaurova, N.; Grishina, E.; Polyakov, S.; Vachtomin, Y.; Svechnikov, S.; Smirnov, K.; Voronov, B.
Title Nanostructured ultrathin NbN film as a terahertz hot-electron bolometer mixer Type Conference Article
Year 2006 Publication Proc. MRS Abbreviated Journal Proc. MRS
Volume (up) 935 Issue Pages 210 (1 to 6)
Keywords NbN HEB mixers
Abstract Planar spiral antenna coupled and directly lens coupled NbN HEB mixer structures are studied. An additional MgO buffer layer between the superconducting film and Si substrate is introduced. The buffer layer enables us to increase the gain bandwidth of a HEB mixer due to better acoustic transparency. The gain bandwidth is widened as NbN film thickness decreases and amounts to 5.2 GHz. The noise temperature of antenna coupled mixer is 1300 and 3100 K at 2.5 and 3.8 THz respectively. The structure and composition of NbN films is investigated by X-ray diffraction spectroscopy methods. Noise performance degradation at LO frequencies more than 3 THz is due to the use of a planar antenna and signal loss in contacts between the antenna and the sensitive NbN bridge. The mixer is reconfigured for operation at higher frequencies in a manner that receiver’s noise temperature is only 2300 K (3 times of quantum limit) at LO frequency of 30 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-9172 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1440
Permanent link to this record
 

 
Author Shurakov, A.; Mikhailov, D.; Belikov, I.; Kaurova, N.; Zilberley, T.; Prikhodko, A.; Voronov, B.; Vasil’evskii, I.; Goltsman, G.
Title Planar Schottky diode with a Γ-shaped anode suspended bridge Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume (up) 1695 Issue Pages 012154
Keywords Schottky diode, GaAs, InP substrate
Abstract In this paper we report on the fabrication of a planar Schottky diode utilizing a Г-shaped anode suspended bridge. The bridge maintains transition between the top and bottom level planes of a 1.4 µm thick GaAs mesa. To implement the profile of a suspended bridge and inward tilt of a mesa wall adjacent to it, we make use of an anisotropic etching of gallium arsenide. The geometry proposed enables the fabrication of a diode with mesa of an arbitrary thickness to mitigate AC losses in the diode layered structure at terahertz frequencies of interest. For frequencies beyond 1 THz, it is also beneficial to use the geometry for the implementation of n-GaAs/n-InGaAs heterojunction Schottky diodes grown on InP substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1152
Permanent link to this record