|   | 
Details
   web
Records
Author Matyushkin, Y.; Danilov, S.; Moskotin, M.; Belosevich, V.; Kaurova, N.; Rybin, M.; Obraztsova, E. D.; Fedorov, G.; Gorbenko, I.; Kachorovskii, V.; Ganichev, S.
Title Helicity-sensitive plasmonic terahertz interferometer Type Journal Article
Year (down) 2020 Publication Nano Lett. Abbreviated Journal Nano Lett.
Volume 20 Issue 10 Pages 7296-7303
Keywords graphene, plasmonic interferometer, radiation helicity, terahertz radiation
Abstract Plasmonic interferometry is a rapidly growing area of research with a huge potential for applications in the terahertz frequency range. In this Letter, we explore a plasmonic interferometer based on graphene field effect transistor connected to specially designed antennas. As a key result, we observe helicity- and phase-sensitive conversion of circularly polarized radiation into dc photovoltage caused by the plasmon-interference mechanism: two plasma waves, excited at the source and drain part of the transistor, interfere inside the channel. The helicity-sensitive phase shift between these waves is achieved by using an asymmetric antenna configuration. The dc signal changes sign with inversion of the helicity. A suggested plasmonic interferometer is capable of measuring the phase difference between two arbitrary phase-shifted optical signals. The observed effect opens a wide avenue for phase-sensitive probing of plasma wave excitations in two-dimensional materials.
Address CENTERA Laboratories, Institute of High Pressure Physics, PAS, 01-142 Warsaw, Poland
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Medium
Area Expedition Conference
Notes PMID:32903004 Approved no
Call Number Serial 1781
Permanent link to this record
 

 
Author Tretyakov, I.; Shurakov, A.; Perepelitsa, A.; Kaurova, N.; Svyatodukh, S.; Zilberley, T.; Ryabchun, S.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G.
Title Room temperature silicon detector for IR range coated with Ag2S quantum dots Type Journal Article
Year (down) 2019 Publication Phys. Status Solidi RRL Abbreviated Journal Phys. Status Solidi RRL
Volume 13 Issue 9 Pages 1900187-(1-6)
Keywords
Abstract For decades, silicon has been the chief technological semiconducting material of modern microelectronics and has a strong influence on all aspects of the society. Applications of Si-based optoelectronic devices are limited to the visible and near infrared (IR) ranges. For photons with an energy less than 1.12 eV, silicon is almost transparent. The expansion of the Si absorption to shorter wavelengths of the IR range is of considerable interest for optoelectronic applications. By creating impurity states in Si, it is possible to cause sub-bandgap photon absorption. Herein, an elegant and effective technology of extending the photo-response of Si toward the IR range is presented. This approach is based on the use of Ag 2 S quantum dots (QDs) planted on the surface of Si to create impurity states in the Si bandgap. The specific sensitivity of the room temperature zero-bias Si_Ag 2 Sp detector is 10 11 cm Hz W 1 at 1.55 μm. Given the variety of available QDs and the ease of extending the photo-response of Si toward the IR range, these findings open a path toward future studies and development of Si detectors for technological applications. The current research at the interface of physics and chemistry is also of fundamental importance to the development of Si optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6254 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1149
Permanent link to this record
 

 
Author Tretyakov, I.; Shurakov, A.; Perepelitsa, A.; Kaurova, N.; Svyatodukh, S.; Zilberley, T.; Ryabchun, S.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G.
Title Silicon room temperature IR detectors coated with Ag2S quantum dots Type Conference Article
Year (down) 2019 Publication Proc. IWQO Abbreviated Journal Proc. IWQO
Volume Issue Pages 369-371
Keywords silicon detector, quantum dot, IR, surface states
Abstract For decades silicon has been the chief technological semiconducting material of modern microelectronics. Application of silicon detectors in optoelectronic devices are limited to the visible and near infrared ranges, due to their transparency for radiation with a wavelength higher than 1.1 μm. The expansion Si absorption towards longer wave lengths is a considerable interest to optoelectronic applications. In this work we present an elegant and effective solution to this problem using Ag2S quantum dots, creating impurity states in Si to cause sub-band gap photon absorption. The sensitivity of room temperature zero-bias Si_Ag2S detectors, which we obtained is 1011 cmHzW . Given the variety of QDs parameters such as: material, dimensions, our results open a path towards the future study and development of Si detectors for technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-5-89513-451-1 Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1154
Permanent link to this record
 

 
Author Elmanov, I.; Elmanova, A.; Komrakova, S.; Golikov, A.; Kaurova, N.; Kovalyuk, V.; Goltsman, G.; Arakelyan, S.; Evlyukhin, A.; Kalachev, A.; Naumov, A.
Title Method for determination of resists parameters for photonic – integrated circuits e-beam lithography on silicon nitride platform Type Conference Article
Year (down) 2019 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 220 Issue Pages 03012
Keywords e-beam lithography, Si3N4
Abstract In the work the thicknesses of the e-beam resists ZEP 520A and ma-N 2400 by using non-destructive method were measured, as well as recipe for the high ratio between the Si3N4 and the resists etching rate was determined. The work has a practical application for e-beam lithography of photonic-integrated circuits and nanophotonics devices based on silicon nitride platform.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1189
Permanent link to this record
 

 
Author Antipov, S.; Trifonov, A.; Krause, S.; Meledin, D.; Kaurova, N.; Rudzinski, M.; Desmaris, V.; Belitsky, V.; Goltsman, G.
Title Improved bandwidth of a 2 THz hot-electron bolometer heterodyne mixer fabricated on sapphire with a GaN buffer layer Type Journal Article
Year (down) 2019 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 32 Issue 7 Pages 075003
Keywords NbN HEB mixer, GaN buffer layer, sapphire substrate
Abstract We report on the signal-to-noise and gain bandwidth of a niobium nitride (NbN) hot-electron bolometer (HEB) mixer at 2 THz fabricated on a sapphire substrate with a GaN buffer layer. Two mixers with different DC properties and geometrical dimensions were studied and they demonstrated very close bandwidth performance. The signal-to-noise bandwidth is increased to 8 GHz in comparison to the previous results, obtained without a buffer-layer. The data were taken in a quasi-optical system with the use of the signal-to-noise method, which is close to the signal levels used in actual astrophysical observations. We find an increase of the gain bandwidth to 5 GHz. The results indicate that prior results obtained on a substrate of crystalline GaN can also be obtained on a conventional sapphire substrate with a few micron MOCVD-deposited GaN buffer-layer.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Antipov_2019 Serial 1277
Permanent link to this record