|   | 
Details
   web
Records
Author Finkel, M.; Thierschmann, H. R.; Galatro, L.; Katan, A. J.; Thoen, D. J.; de Visser, P. J.; Spirito, M.; Klapwijk, T. M.
Title Branchline and directional THz coupler based on PECVD SiNx-technology Type Conference Article
Year 2016 Publication 41st IRMMW-THz Abbreviated Journal 41st IRMMW-THz
Volume Issue Pages
Keywords microstrip, fixtures, coplanar waveguides, couplers, standards, probes, dielectrics
Abstract (up) A fabrication technology to realize THz microstrip lines and passive circuit components is developed and tested making use of a plasma-enhanced chemical vapor deposition grown silicon nitride (PECVD SiNx) dielectric membrane. We use 2 μm thick SiNx and 300 nm thick gold layers on sapphire substrates. We fabricate a set of structures for thru-reflect-line (TRL) calibration, with the reflection standard implemented as a short through the via. We find losses of 9.5 dB/mm at 300 GHz for a 50 Ohm line. For a branchline coupler we measure 2.5 dB insertion loss, 1 dB amplitude imbalance and 21 dB isolation. Good control over the THz lines parameters is proven by similar performance of a set of 5 structures. The directional couplers show -14 dB transmission to the coupled port, -24 dB to the isolated port and -25 dB in reflection. The SiNx membrane, used as a dielectric, is compatible with atomic force microscopy (AFM) cantilevers allowing the application of this technology to the development of a THz near-field microscope.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-2035 ISBN 978-1-4673-8485-8 Medium
Area Expedition Conference
Notes Approved no
Call Number 7758586 Serial 1295
Permanent link to this record
 

 
Author Heslinga, D. R.; Shafranjuk, S. E.; van Kempen, H.; Klapwijk, T. M.
Title Observation of double-gap-edge Andreev reflection at Si/Nb interfaces by point-contact spectroscopy Type Journal Article
Year 1994 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 49 Issue 15 Pages 10484-10494
Keywords Nb, Si, Nb-Si, Nb/Si, Si/Nb, Andreev reflection, point-contact spectroscopy
Abstract (up) Andreev reflection point-contact spectroscopy is performed on a bilayer consisting of 50-nm degenerately doped Si backed with Nb. Due to the short mean free path both injection into and transport across the Si layer are diffusive, in contrast to the ballistic conditions prevailing in clean metal layers. Nevertheless a large Andreev signal is observed in the point-contact characteristics, not reduced by elastic scattering in the Si layer or by interface scattering, but only limited by the transmission coefficient of the metal-semiconductor point contact. Two peaks in the Andreev reflection probability are visible, marking the values of the superconducting energy gap at the interface on the Nb and Si sides. This interpretation is supported by a method of solving the Bogolubov equations analytically using a simplified expression for the variation of the order parameter close to the interface. This observation enables a comparison with theoretical predictions of the gap discontinuity in the proximity effect. It is found that the widely used de Gennes model does not agree with the experimental data.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1005
Permanent link to this record
 

 
Author Romijn, J.; Klapwijk, T. M.; Renne, M. J.; Mooij, J. E.
Title Critical pair-breaking current in superconducting aluminum strips far below Tc Type Journal Article
Year 1982 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 26 Issue 7 Pages 3648-3655
Keywords superconducting nanowire
Abstract (up) Critical currents of narrow, thin aluminum strips have been measured as a function of temperature. For the smallest samples uniformity of the current density is obtained over a large temperature range. Hence the intrinsic limit on the currentcarrying capacity of the superconductor was measured outside the Ginzburg-Landau -regime. The experimental values are compared with recent theoretical predictions by Kupriyanov and Lukichev. An approximate method of solving their equations is given, the results of which agree with the exact solution to within 1%. Experimental data are in excellent agreement with theoretical predictions. The absolute values agree if one assumes a ρl value of 4×10–16 Ωm2 with vF=1.3×106 m/s. This value for ρl is the same as that found from measurements of the anomalous skin effect but differs from values extracted from size-effect-limited resistivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 925
Permanent link to this record
 

 
Author Hajenius, M.; Barends, R.; Gao, J. R.; Klapwijk, T. M.; Baselmans, J. J. A.; Baryshev, A.; Voronov, B.; Gol'tsman, G.
Title Local resistivity and the current-voltage characteristics of hot electron bolometer mixers Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 495-498
Keywords HEB mixer distributed model, HEB distributed model, distributed HEB model
Abstract (up) Hot-electron bolometer devices, used successfully in low noise heterodyne mixing at frequencies up to 2.5 THz, have been analyzed. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, is used to model pumped IV curves and understand the physical conditions during the mixing process. We argue that the mixing is predominantly due to the strongly temperature dependent local resistivity of the NbN. Experimentally we identify the origins of different transition temperatures in a real HEB device, suggesting the importance of the intrinsic resistive transition of the superconducting bridge in the modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 980
Permanent link to this record
 

 
Author Tretyakov, I.; Maslennikov, S.; Semenov, A.; Safir, O.; Finkel, M.; Ryabchun, S.; Kaurova, N.; Voronov, B.; Goltsman, G.; Klapwijk, T. M.
Title Impact of operating conditions on noise and gain bandwidth of NbN HEB mixers Type Conference Article
Year 2015 Publication Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 26th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 39
Keywords NbN HEB mixers
Abstract (up) Hot-electron bolometer mixers (HEB’s) are the most promising devices as mixing element for terahertz spectroscopy and astronomy at frequencies beyond 1.4 THz. They have a low noise temperature and low demands on local oscillator (LO) power. 1,2 An important limitation is the IF bandwidth, of the order of a few GHz, and which in principle depends on energy relaxation due to electron- phonon processes and on diffusion-cooling. It has been proposed by Prober that a reduction in length of the HEB would lead to an increased bandwidth. 3 This appeared to be achieved by Tretyakov et al by measuring the gain bandwidth close to the critical temperature of the NbN. 2 Unfortunately, the noise bandwidth of similar devices operated at temperatures around 4.2 K appear not depend on the length. The fundamental problem to be addressed is the position-dependent superconducting state of the HEB- devices under operating conditions, which determines the conditions for the cooling of the hot quasiparticles. Some progress has been made by Barends et al in a semi-empirical model to describe the I,V curves under operating conditions at a bath temperature around 4.2 K. 4 In more recent work Vercruyssen et al have analyzed the I,V curve, without any LO-equivalent bias, of a model NSN system. 5 This work suggests that the most appropriate model for an HEB under operating conditions is that of a potential-well in the superconducting gap in the center of the NbN, analogous the bimodal superconducting state described by Vercruyssen et al. Hot quasiparticles in the well can not diffuse out and can only cool by electron-phonon processes, those with higher energies than the heights of the walls of the well can diffuse out. Using this working hypothesis we have carried out experiments on a sub-micrometer NbN bridge connected to a gold (Au) planar spiral antenna. An in situ process is used to deposit Au on NbN. The Au is removed in the center to define the uncovered NbN, which will act as the superconducting mixer itself. The antenna is deposited on the remaining Au layer on the NbN. The Au contacts suppress the energy gap of the NbN film located underneath the gold layer 7,8 . The measured resistive transition is shown in Fig.1. It clearly shows a T c of the bilayer at 6.2 K and the resistive transition of the NbN itself around 9 K. In addition we show the measured noise bandwidth (red squares) for different bath temperatures. Clearly the noise bandwidth increases strongly by increasing the bath temperature from 5 K to 8 K, up to 13 GHz. We interpret this pattern as evidence for improved out-diffusion of hot electrons due to normal banks and a shallow superconducting potential well compared to k B T. As expected the noise temperature in this regime is much bigger than when biased at 4.2 K. R EFERENCES 1 W. Zhang, P. Khosropanah, J. R. Gao, E. L. Kollberg, K. S. Yngvesson, T. Bansal, R. Barends, and T. M. Klapwijk Appl. Phys. Lett. 96, 111113, (2010). 2 Ivan Tretyakov, Sergey Ryabchun, Matvey Finkel, Anna Maslennikova, Natalia Kaurova, Anastasia Lobastova, Boris Voronov, and Gregory Gol’tsman Appl. Phys. Lett. 98, 033507 (2011). 3 D. E. Prober, Appl. Phys. Lett. 62, 2119 (1992). 4 R. Barends, M. Hajenius, J. R. Gao, and T. M. Klapwijk, Appl. Phys. Lett. 87, 263506 (2005). 5 N. Vercruyssen, T. G. A. Verhagen, M. G. Flokstra, J. P. Pekola, and T. M. Klapwijk Physical Review B 85, 224503 (2012).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1159
Permanent link to this record