|   | 
Details
   web
Records
Author (up) Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title Noise performance of NbN hot electron bolometer mixers at 2.5 THz and its dependence on the contact resistance Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 11-19
Keywords NbN HEB mixers
Abstract NbN hot electron bolometer mixers (HEBM) are at this moment the best heterodyne receivers for frequencies above 1 Thz. However, the fabrication procedure of these devices is such that the quality of the interface between the NbN superconducting film and the contact structure is not under good control. The result is a low transparency interface between the bolometer itself and the contact/antenna structure. In this paper we report a detailed experimental study on a novel idea to increase the transparency of this interface. This leads to a record sensitivity and more reproducible performance. We compare identical bolometers, coupled with a spiral antenna, with different NbN bolometer-contact pad interfaces. We find that cleaning the NbN interface alone results in an increase in the noise temperature. However, cleaning the NbN interface and adding a thin additional superconductor prior to the gold contact deposition improves the noise temperature of the HEBm with more than a factor of 2. A device with a contact pad on top of an in-situ cleaned NbN film consisting of 10 nm of NbTiN and 40 nm of gold has a DSB noise temperature of 1050 K at 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1497
Permanent link to this record
 

 
Author (up) Baselmans, J. J. A.; Hajenius, M.; Gao, J.; de Korte, P.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G.
Title Doubling of sensitivity and bandwidth in phonon-cooled hot-electron bolometer mixers Type Conference Article
Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5498 Issue Pages 168-176
Keywords Hot electron bolometers, bandwidth, noise temperature, experimental
Abstract NbN hot electron bolometer (HEB) mixers are at this moment the best heterodyne detectors for frequencies above 1 THz. However, the fabrication procedure of these devices is such that the quality of the interface between the NbN superconducting film and the contact structure is not under good control. This results in a contact resistance between the NbN bolometer and the contact pad. We compare identical bolometers, with different NbN – contact pad interfaces, coupled with a spiral antenna. We find that cleaning the NbN interface and adding a thin additional superconductor prior to the gold contact deposition improves the noise temperature and the bandwidth of the HEB mixers with more than a factor of 2. We obtain a DSB noise temperature of 950 K at 2.5 THz and a Gain bandwidth of 5-6 GHz. For use in real receiver systems we design small volume (0.15x1 micron) HEB mixers with a twin slot antenna. We find that these mixers combine good sensitivity (900 K at 1.6 THz) with low LO power requirement, which is 160 – 240 nW at the Si lens of the mixer. This value is larger than expected from the isothermal technique and the known losses in the lens by a factor of 3-3.5.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Zmuidzinas, J.; Holland, W.S.; Withington, S.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy II
Notes Approved no
Call Number Serial 1744
Permanent link to this record
 

 
Author (up) Baselmans, J.; Kooi, J.; Baryshev, A.; Yang, Z. Q.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G.
Title Full characterization of small volume NbN HEB mixers for space applications Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 457-462
Keywords NbN HEB mixers
Abstract NbN phonon cooled HEB’s are one of the most promising bolometer mixer technologies for (near) future (space) applications. Their performance is usually quantified by mea- suring the receiver noise temperature at a given IF frequency, usually around 1 – 2 GHz. However, for any real applications it is vital that one fully knows all the relevant properties of the mixer, including LO power, stability, direct detection, gain bandwidth and noise bandwidth, not only the noise temperature at low IF frequencies. To this aim we have measured all these parameters at the optimal operating point of one single, small volume quasioptical NbN HEB mixer. We find a minimum noise temperature of 900 K at 1.46 THz. We observe a direct detection effect indicated by a change in bias current when changing from a 300 K hot load to a 77 K cold load. Due to this effect we overestimate the noise temperature by about 22% using a 300 K hot load and a 77 K cold load. The LO power needed to reach the optimal operating point is 80 nW at the receiver lens front, 59 nW inside the NbN bridge. However, using the isothermal technique we find a power absorbed in the NbN bridge of 25 nW, a difference of about a factor 2. We obtain a gain bandwidth of 2.3 GHz and a noise bandwidth of 4 GHz. The system Allan time is about 1 sec. in a 50 MHz spectral bandwidth and a deviation from white noise integration (governed by the radiometer equation) occurs at 0.2 sec., which implies a maximum integration time of a few seconds in a 1 MHz bandwidth spectrometer.
Address
Corporate Author Thesis
Publisher Place of Publication Göteborg, Sweden Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 363
Permanent link to this record
 

 
Author (up) Bueno, J.; Coumou, P. C. J. J.; Zheng, G.; de Visser, P. J.; Klapwijk, T. M.; Driessen, E. F. C.; Doyle, S.; Baselmans, J. J. A
Title Anomalous response of superconducting titanium nitride resonators to terahertz radiation Type Journal Article
Year 2014 Publication Appl. Phys. Lett. Abbreviated Journal
Volume 105 Issue Pages 192601 (1 to 5)
Keywords KID, TiN, NEP, disordered superconductors, inhomogeneous state
Abstract We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1068
Permanent link to this record
 

 
Author (up) Coumou, P. C. J. J.; Driessen, E. F. C.; Bueno, J.; Chapelier, C.; Klapwijk, T. M.
Title Electrodynamic response and local tunneling spectroscopy of strongly disordered superconducting TiN films Type Journal Article
Year 2013 Publication Phys. Rev. B Abbreviated Journal
Volume 88 Issue 18 Pages 180505 (1 to 5)
Keywords strongly disordered superconducting TiN films, microwave resonators
Abstract We have studied the electrodynamic response of strongly disordered superconducting TiN films using microwave resonators, where the disordered superconductor is the resonating element in a high-quality superconducting environment of NbTiN. We describe the response assuming an effective pair-breaking mechanism modifying the density of states and compare this to local tunneling spectra obtained using scanning tunneling spectroscopy. For the least disordered film (kFl=8.7, Rs=13Ω), we find good agreement, whereas for the most disordered film (kFl=0.82, Rs=4.3kΩ), there is a strong discrepancy, which signals the breakdown of a model based on uniform properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1069
Permanent link to this record