|   | 
Details
   web
Records
Author Hajenius, M.; Yang, Z. Q.; Gao, J. R.; Baselmans, J. J. A.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.
Title Optimized sensitivity of NbN hot electron bolometer mixers by annealing Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume (down) 17 Issue 2 Pages 399-402
Keywords NbN HEB mixers
Abstract We report that the heterodyne sensitivity of superconducting hot-electron bolometers (HEBs) increases by 25-30% after annealing at 85degC in high vacuum. The devices studied are twin-slot antenna coupled mixers with a small area NbN bridge of 1 mum times 0.15 mum, above which there is a SiO 2 passivation layer. The mixer noise temperature, gain, and resistance versus temperature curve of a HEB before and after annealing are compared and analysed. We show that the annealing reduces the intrinsic noise of the mixer by 37% and makes the superconducting transition of the bridge and the contacts sharper. We argue that the reduction ofthe noise is mainly due to the improvement of the transparency of the contact/film interface. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and at a bath temperature of 4.2 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1426
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Baryshev, A.; Kooi, J.; Klapwijk, T. M.; Voronov, B.; de Korte, P.; Gol'tsman, G.
Title NbN hot electron bolometer mixers: sensitivity, LO power, direct detection and stability Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume (down) 15 Issue 2 Pages 484-489
Keywords HEB mixers, direct detection effect, stability, Allan variance
Abstract We demonstrate that the performance of NbN lattice cooled hot electron bolometer mixers depends strongly on the interface quality between the bolometer and the contact structure. Both the receiver noise temperature and the gain bandwidth can be improved by a factor of 2 by cleaning the interface and adding an additional superconducting interlayer to the contact pad. Using this we obtain a double sideband receiver noise temperature of 950 K at 2.5 THz and 4.3 K, using a 0.4/spl times/4 /spl mu/m HEB mixer with a spiral antenna. At the same bias point, we obtain an IF gain bandwidth of 6 GHz. To comply with current demands on THz mixers for use in space based receivers we reduce the device size to 0.15/spl times/1 /spl mu/m and use a twin slot antenna. We report measurements of the noise temperature, LO power requirement, stability and the direct detection effect, using a mixer with a 1.6 THz twin slot antenna and a 1.462 THz solid state LO source with calibrated output power.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 546
Permanent link to this record
 

 
Author Hajenius, M.; Barends, R.; Gao, J. R.; Klapwijk, T. M.; Baselmans, J. J. A.; Baryshev, A.; Voronov, B.; Gol'tsman, G.
Title Local resistivity and the current-voltage characteristics of hot electron bolometer mixers Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume (down) 15 Issue 2 Pages 495-498
Keywords HEB mixer distributed model, HEB distributed model, distributed HEB model
Abstract Hot-electron bolometer devices, used successfully in low noise heterodyne mixing at frequencies up to 2.5 THz, have been analyzed. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, is used to model pumped IV curves and understand the physical conditions during the mixing process. We argue that the mixing is predominantly due to the strongly temperature dependent local resistivity of the NbN. Experimentally we identify the origins of different transition temperatures in a real HEB device, suggesting the importance of the intrinsic resistive transition of the superconducting bridge in the modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 980
Permanent link to this record
 

 
Author Yang, Y.; Fedorov, G.; Shafranjuk, S. E.; Klapwijk, T. M.; Cooper, B. K.; Lewis, R. M.; Lobb, C. J.; Barbara, P.
Title Electronic transport and possible superconductivity at Van Hove singularities in carbon nanotubes Type Journal Article
Year 2015 Publication Nano Lett. Abbreviated Journal Nano Lett.
Volume (down) 15 Issue 12 Pages 7859-7866
Keywords carbon nanotubes, CNT, tunable superconductivity, van Hove singularities
Abstract Van Hove singularities (VHSs) are a hallmark of reduced dimensionality, leading to a divergent density of states in one and two dimensions and predictions of new electronic properties when the Fermi energy is close to these divergences. In carbon nanotubes, VHSs mark the onset of new subbands. They are elusive in standard electronic transport characterization measurements because they do not typically appear as notable features and therefore their effect on the nanotube conductance is largely unexplored. Here we report conductance measurements of carbon nanotubes where VHSs are clearly revealed by interference patterns of the electronic wave functions, showing both a sharp increase of quantum capacitance, and a sharp reduction of energy level spacing, consistent with an upsurge of density of states. At VHSs, we also measure an anomalous increase of conductance below a temperature of about 30 K. We argue that this transport feature is consistent with the formation of Cooper pairs in the nanotube.
Address Department of Physics, Georgetown University , Washington, District of Columbia 20057, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Medium
Area Expedition Conference
Notes PMID:26506109; Suuplementary info (attached to pdf) DOI: 10.1021/acs.nanolett.5b02564 Approved no
Call Number Serial 1782
Permanent link to this record
 

 
Author Baeva, E. M.; Sidorova, M. V.; Korneev, A. A.; Smirnov, K. V.; Divochy, A. V.; Morozov, P. V.; Zolotov, P. I.; Vakhtomin, Y. B.; Semenov, A. V.; Klapwijk, T. M.; Khrapai, V. S.; Goltsman, G. N.
Title Thermal properties of NbN single-photon detectors Type Journal Article
Year 2018 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume (down) 10 Issue 6 Pages 064063 (1 to 8)
Keywords NbN SSPD, SNSPD
Abstract We investigate thermal properties of a NbN single-photon detector capable of unit internal detection efficiency. Using an independent calibration of the coupling losses, we determine the absolute optical power absorbed by the NbN film and, via resistive superconductor thermometry, the temperature dependence of the thermal resistance Z(T) of the NbN film. In principle, this approach permits simultaneous measurement of the electron-phonon and phonon-escape contributions to the energy relaxation, which in our case is ambiguous because of the similar temperature dependencies. We analyze Z(T) with a two-temperature model and impose an upper bound on the ratio of electron and phonon heat capacities in NbN, which is surprisingly close to a recent theoretical lower bound for the same quantity in similar devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1226
Permanent link to this record