toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gol'tsman, G.; Korneev, A.; Minaeva, O.; Antipov, A.; Divochiy, A.; Kaurova, N.; Voronov, B.; Pan, D.; Cross, A.; Pearlman, A.; Komissarov, I.; Slysz, W.; Sobolewski, R. openurl 
  Title Middle-infrared to visible-light ultrafast superconducting single-photon detector Type Conference Article
  Year 2006 Publication Proc. ASC Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Seattle Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ SSPD_cavity_ASC Serial 389  
Permanent link to this record
 

 
Author Chulkova, G.; Milostnaya, I.; Tarkhov, M.; Korneev, A.; Minaeva, O.; Voronov, B.; Divochiy, A.; Gol'tsman, G.; Kitaygorsky, J.; Pan, D.; Sobolewski, R. url  openurl
  Title Superconducting single-photon nanostructured detectors for advanced optical applications Type Conference Article
  Year 2006 Publication Proc. Symposium on Photonics Technologies for 7th Framework Program Abbreviated Journal  
  Volume 400 Issue Pages (up)  
  Keywords SSPD, SNSPD  
  Abstract We present superconducting single-photon detectors (SSPDs) based on NbN thin-film nanostructures and operated at liquid helium temperatures. The SSPDs are made of ultrathin NbN films (2.5-4 nm thick, Tc= 9-11K) as meander-shaped nanowires covering the area of 10× 10 µm2. Our detectors are operated at the temperature well below the critical temperature Tc and are DC biased by a current Ib close to the meander critical current Ic. The operation principle of the detector is based on the use of the resistive region in a narrow ultra-thin superconducting stripe upon the absorption of an incident photon. The developed devices demonstrate high sensitivity and response speed in a broadband range from UV to mid-IR (up to 6 µm), making them very attractive for advanced optical technologies, which require efficient detectors of single quanta and low-density optical radiation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ chulkova2006superconducting Serial 1021  
Permanent link to this record
 

 
Author Korneev, A. A.; Divochiy, A. V.; Vakhtomin, Yu. B.; Korneeva, Yu. P.; Larionov, P. A.; Manova, N. N.; Florya, I. N.; Trifonov, A. V.; Voronov, B. M.; Smirnov, K. V.; Semenov, A. V.; Chulkova, G. M.; Goltsman, G. N. url  openurl
  Title IR single-photon receiver based on ultrathin NbN superconducting film Type Journal Article
  Year 2013 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.  
  Volume Issue 5 Pages (up)  
  Keywords SSPD, SNSPD  
  Abstract We present our recent results in research and development of superconducting single-photon detector (SSPD). We achieved the following performance improvement: first, we developed and characterized SSPD integrated in optical cavity and enabling its illumination from the face side, not through the substrate, second, we improved the quantum efficiency of the SSPD at around 3 μm wavelength by reduction of the strip width to 40 nm, and, finally, we improved the detection efficiency of the SSPD-based single-photon receiver system up to 20% at 1550 nm and extended its wavelength range beyond 1800 nm by the usage of the fluoride ZBLAN fibres.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 8 pages Approved no  
  Call Number RPLAB @ sasha @ korneevir Serial 1043  
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol’tsman, G. url  openurl
  Title Superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
  Year 2008 Publication Supercond. News Forum Abbreviated Journal Supercond. News Forum  
  Volume Issue Pages (up)  
  Keywords PNR SSPD, SNSPD  
  Abstract We present our latest generation of ultra-fast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). The novel SSPDs combine 10 μm x 10 μm active area with low kinetic inductance and PNR capability. That resulted in significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector’s response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performance of the PNR SSPDs. These detectors are perfectly suited for fibreless free-space telecommunications, as well as for ultra-fast quantum cryptography and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Reference No. ST34, paper # 012307, eventually not pulished (skipped) at https://iopscience.iop.org/issue/0953-2048/21/1 Approved no  
  Call Number RPLAB @ sasha @ korneevsuperconducting Serial 1046  
Permanent link to this record
 

 
Author Pyatkov, Felix; Khasminskaya, Svetlana; Fütterling, Valentin; Fechner, Randy; Słowik, Karolina; Ferrari, Simone; Kahl1, Oliver; Kovalyuk, Vadim; Rath, Patrik; Vetter, Andreas; Flavel, Benjamin S.; Hennrich, Frank; Kappes, Manfred M.; Gol’tsman, Gregory N.; Korneev, Alexander; Rockstuhl, Carsten; Krupke, Ralph; Pernice, Wolfram H. P. url  openurl
  Title Carbon nanotubes as exceptional electrically driven on-chip light sources Type Miscellaneous
  Year 2016 Publication 2Physics Abbreviated Journal 2Physics  
  Volume Issue Pages (up)  
  Keywords carbon nanotubes, CNT  
  Abstract Carbon nanotubes (CNTs) belong to the most exciting objects of the nanoworld. Typically, around 1 nm in diameter and several microns long, these cylindrically shaped carbon-based structures exhibit a number of exceptional mechanical, electrical and optical characteristics [1]. In particular, they are promising ultra-small light sources for the next generation of optoelectronic devices, where electrical components are interconnected with photonic circuits.

Few years ago, we demonstrated that electically driven CNTs can serve as waveguide-integrated light sources [2]. Progress in the field of nanotube sorting, dielectrophoretical site-selective deposition and efficient light coupling into underlying substrate has made CNTs suitable for wafer-scale fabrication of active hybrid nanophotonic devices [2,3].

Recently we presented a nanotube-based waveguide integrated light emitters with tailored, exceptionally narrow emission-linewidths and short response times [4]. This allows conversion of electrical signals into well-defined optical signals directly within an optical waveguide, as required for future on-chip optical communication. Schematics and realization of this device is shown in Figure 1. The devices were manufactured by etching a photonic crystal waveguide into a dielectric layer following electron beam lithography. Photonic crystals are nanostructures that are also used by butterflies to give the impression of color on their wings. The same principle has been used in this study to select the color of light emitted by the CNT. The precise dimensions of the structure were numerically simulated to tailor the properties of the final device. Metallic contacts in the vicinity to the waveguide were fabricated to provide electrical access to CNT emitters. Finally, CNTs, sorted by structural and electronic properties, were deposited from a solution across the waveguide using dielectrophoresis, which is an electric-field-assisted deposition technique.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2372-1782 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1219  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: