|
Records |
Links |
|
Author  |
An, P.; Kovalyuk, V.; Golikov, A.; Zubkova, E.; Ferrari, S.; Korneev, A.; Pernice, W.; Goltsman, G. |

|
|
Title |
Experimental optimisation of O-ring resonator Q-factor for on-chip spontaneous four wave mixing |
Type |
Conference Article |
|
Year |
2018 |
Publication |
J. Phys.: Conf. Ser. |
Abbreviated Journal |
J. Phys.: Conf. Ser. |
|
|
Volume |
1124 |
Issue |
|
Pages |
051047 |
|
|
Keywords |
planar O-ring resonators, Q-factor |
|
|
Abstract |
In this paper we experimentally studied the influence of geometrical parameters of the planar O-ring resonators on its Q-factor and losses. We systematically changed the gap between the bus waveguide and the ring, as well as the width of the ring. We found the highest Q = 5×105 for gap 2.0 μm and the ring width 2 μm. This work is important for further on-chip SFWM applications since the generation rate of the biphoton field strongly depends on the quality factor as Q3 |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1742-6588 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1191 |
|
Permanent link to this record |
|
|
|
|
Author  |
Arutyunov, K. Y.; Ramos-Alvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N. |

|
|
Title |
Superconductivity in highly disordered NbN nanowires |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Nanotechnol. |
Abbreviated Journal |
Nanotechnol. |
|
|
Volume |
27 |
Issue |
47 |
Pages |
47lt02 (1 to 8) |
|
|
Keywords |
NbN nanowires |
|
|
Abstract |
The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c approximately (1-T/T c)(3/2). We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links. |
|
|
Address |
National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics,109028, Moscow, Russia. P L Kapitza Institute for Physical Problems RAS, Moscow, 119334, Russia |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0957-4484 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:27782000 |
Approved |
no |
|
|
Call Number |
|
Serial |
1332 |
|
Permanent link to this record |
|
|
|
|
Author  |
Arutyunov, K. Y.; Ramos-Álvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol’tsman, G. N. |

|
|
Title |
Quasi-1-dimensional superconductivity in highly disordered NbN nanowires |
Type |
Miscellaneous |
|
Year |
2016 |
Publication |
arXiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
narrow NbN nanowires, BCS |
|
|
Abstract |
The topic of superconductivity in strongly disordered materials has attracted a significant attention. In particular vivid debates are related to the subject of intrinsic spatial inhomogeneity responsible for non-BCS relation between the superconducting gap and the pairing potential. Here we report experimental study of electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. We find that conventional models based on phase slip concept provide reasonable fits for the shape of the R(T) transition curve. Temperature dependence of the critical current follows the text-book Ginzburg-Landau prediction for quasi-one-dimensional superconducting channel Ic~(1-T/Tc)^3/2. Hence, one may conclude that the intrinsic electronic inhomogeneity either does not exist in our structures, or, if exist, does not affect their resistive state properties. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
Duplicated as 1332 |
Approved |
no |
|
|
Call Number |
|
Serial |
1338 |
|
Permanent link to this record |
|
|
|
|
Author  |
Baeva, E. M.; Sidorova, M. V.; Korneev, A. A.; Smirnov, K. V.; Divochy, A. V.; Morozov, P. V.; Zolotov, P. I.; Vakhtomin, Y. B.; Semenov, A. V.; Klapwijk, T. M.; Khrapai, V. S.; Goltsman, G. N. |

|
|
Title |
Thermal properties of NbN single-photon detectors |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Phys. Rev. Applied |
Abbreviated Journal |
Phys. Rev. Applied |
|
|
Volume |
10 |
Issue |
6 |
Pages |
064063 (1 to 8) |
|
|
Keywords |
NbN SSPD, SNSPD |
|
|
Abstract |
We investigate thermal properties of a NbN single-photon detector capable of unit internal detection efficiency. Using an independent calibration of the coupling losses, we determine the absolute optical power absorbed by the NbN film and, via resistive superconductor thermometry, the temperature dependence of the thermal resistance Z(T) of the NbN film. In principle, this approach permits simultaneous measurement of the electron-phonon and phonon-escape contributions to the energy relaxation, which in our case is ambiguous because of the similar temperature dependencies. We analyze Z(T) with a two-temperature model and impose an upper bound on the ratio of electron and phonon heat capacities in NbN, which is surprisingly close to a recent theoretical lower bound for the same quantity in similar devices. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2331-7019 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1226 |
|
Permanent link to this record |
|
|
|
|
Author  |
Baeva, E.; Sidorova, M.; Korneev, A.; Goltsman, G. |

|
|
Title |
Precise measurement of the thermal conductivity of superconductor |
Type |
Conference Article |
|
Year |
2018 |
Publication |
Proc. AIP Conf. |
Abbreviated Journal |
Proc. AIP Conf. |
|
|
Volume |
1936 |
Issue |
1 |
Pages |
020003 (1 to 4) |
|
|
Keywords |
NbN SSPD, SNSPD |
|
|
Abstract |
Measuring the thermal properties such as the heat capacity provide information about intrinsic mechanisms operated inside. In general, the ratio between electron and phonon specific heat Ce/Cp shows how the absorbed energy shared between electron and phonon subsystems. In this work we make estimations for amplitude-modulated absorption of THz radiation technique for investigation of the ratio Ce/Cp in superconducting Niobium Nitride (NbN) at T = Tc. Our results indicates that experimentally the frequency of modulation has to be extra large to extract the quantity. We perform a new technique allowed to work at low frequency with accurately measurement of absorbed power. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
doi:10.1063/1.5025441 |
Serial |
1311 |
|
Permanent link to this record |