toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Glejm, A. V.; Anisimov, A. A.; Asnis, L. N.; Vakhtomin, Yu. B.; Divochiy, A. V.; Egorov, V. I.; Kovalyuk, V. V.; Korneev, A. A.; Kynev, S. M.; Nazarov, Yu. V.; Ozhegov, R. V.; Rupasov, A. V.; Smirnov, K. V.; Smirnov, M. A.; Goltsman, G. N.; Kozlov, S. A. doi  openurl
  Title Quantum key distribution in an optical fiber at distances of up to 200 km and a bit rate of 180 bit/s Type Journal Article
  Year 2014 Publication Bulletin of the Russian Academy of Sciences. Physics Abbreviated Journal  
  Volume 78 Issue 3 Pages (up) 171-175  
  Keywords SSPD, SNSPD, applications  
  Abstract An experimental demonstration of a subcarrier-wave quantum cryptography system with superconducting single-photon detectors (SSPDs) that distributes a secure key in a single-mode fiber at distance of 25 km with a bit rate of 800 kbit/s, a distance of 100 km with a bit rate of 19 kbit/s, and a distance of 200 km with a bit rate of 0.18 kbit/s is described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1062-8738 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 940  
Permanent link to this record
 

 
Author Zhang, Jin; Slysz, W.; Verevkin, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol'tsman, G. N.; Sobolewski, R. doi  openurl
  Title Response time characterization of NbN superconducting single-photon detectors Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 13 Issue 2 Pages (up) 180-183  
  Keywords SSPD jitter, SNSPD jitter  
  Abstract We report our time-resolved measurements of NbN-based superconducting single-photon detectors. The structures are meander-type, 10-nm thick, and 200-nm wide stripes and were operated at 4.2 K. We have shown that the NbN devices can count single-photon pulses with below 100-ps time resolution. The response signal pulse width was about 150 ps, and the system jitter was measured to be 35 ps.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1058  
Permanent link to this record
 

 
Author Florya, I. N.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film Type Journal Article
  Year 2018 Publication Low Temp. Phys. Abbreviated Journal Low Temp. Phys.  
  Volume 44 Issue 3 Pages (up) 221-225  
  Keywords WSi SSPD, SNSPD  
  Abstract Superconducting nanowire single-photon detectors (SNSPD) are used in quantum optics when record-breaking time resolution, high speed, and exceptionally low levels of dark counts (false readings) are required. Their detection efficiency is limited, however, by the absorption coefficient of the ultrathin superconducting film for the detected radiation. One possible way of increasing the detector absorption without limiting its broadband response is to make a detector in the form of several vertically stacked layers and connect them in parallel. For the first time we have studied single-photon detection in a multilayer structure consisting of three superconducting layers of amorphous tungsten silicide (WSi) separated by thin layers of amorphous silicon. Two operating modes of the detector are illustrated: an avalanche regime and an arm-trigger regime. A shift in these modes occurs at currents of ∼0.5–0.6 times the critical current of the detector.

This work was supported by technical task No. 88 for scientific research at the National Research University “Higher School of Economics,” Grant No. 14.V25.31.0007 from the Ministry of Education and Science of Russia, and the work of G. N. Goltsman was supported by task No. 3.7328.2017/VU of the Ministry of Education and Science of Russia.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-777X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1310  
Permanent link to this record
 

 
Author Ryabchun, S.; Korneev, A.; Matvienko, V.; Smirnov, K.; Kouminov, P.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol’tsman, G. N. url  openurl
  Title Superconducting single photon detectors array based on hot electron phenomena Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (up) 242-247  
  Keywords NbN SSPD arrays, SNSPD  
  Abstract In this paper we propose to use time domain multiplexing for large format arrays of superconducting single photon detectors (SSPDs) of the terahertz, visible and infrared frequency ranges based on ultrathin superconducting NbN films. Effective realization of time domain multiplexing for SSPD arrays is possible due to a short electric pulse of the SSPD as response to radiation quantum absorption, picosecond jitter and extremely low noise equivalent power (NEP). We present experimental results of testing 2×2 arrays in the infrared waveband. The measured noise equivalent power in the infrared and expected for the terahertz waveband is 10 – 21 WHz -1/2 . The best quantum efficiency (QE) of SSPD is 50% at 1.3 µm wavelength.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1493  
Permanent link to this record
 

 
Author Gol'tsman, G.; Minaeva, O.; Korneev, A.; Tarkhov, M.; Rubtsova, I.; Divochiy, A.; Milostnaya, I.; Chulkova, G.; Kaurova, N.; Voronov, B.; Pan, D.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Komissarov, I.; Slysz, W.; Wegrzecki, M.; Grabiec, P.; Sobolewski, R. url  doi
openurl 
  Title Middle-infrared to visible-light ultrafast superconducting single-photon detectors Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages (up) 246-251  
  Keywords SSPD, SNSPD  
  Abstract We present an overview of the state-of-the-art of NbN superconducting single-photon detectors (SSPDs). Our devices exhibit quantum efficiency (QE) of up to 30% in near-infrared wavelength and 0.4% at 5 mum, with a dark-count rate that can be as low as 10 -4 s -1 . The SSPD structures integrated with lambda/4 microcavities achieve a QE of 60% at telecommunication, 1550-nm wavelength. We have also developed a new generation of SSPDs that possess the QE of large-active-area devices, but, simultaneously, are characterized by low kinetic inductance that allows achieving short response times and the GHz-counting rate with picosecond timing jitter. The improvements presented in the SSPD development, such as fiber-coupled SSPDs, make our detectors most attractive for high-speed quantum communications and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 431  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: