toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M. url  openurl
  Title Optical single photon detection in micron-scaled NbN bridges Type Miscellaneous
  Year 2018 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords SSPD  
  Abstract We demonstrate experimentally that single photon detection can be achieved in micron-wide NbN bridges, with widths ranging from 0.53 μm to 5.15 μm and for photon-wavelengths from 408 nm to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50 % of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors (SSPDs), based on nanometer scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modelling based on the theory of non-equilibrium superconductivity including the vortex-assisted mechanism of initial dissipation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1303 Approved no  
  Call Number Serial 1312  
Permanent link to this record
 

 
Author Korneev, A.; Semenov, A.; Vodolazov, D.; Gol’tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title Physics and operation of superconducting single-photon devices Type Book Chapter
  Year 2017 Publication Superconductors at the Nanoscale Abbreviated Journal  
  Volume Issue Pages 279-308  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher De Gruyter Place of Publication Editor Wördenweber, R.; Moshchalkov, V.; Bending, S.; Tafuri, F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1326  
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. url  openurl
  Title Spectrally resolved single-photon imaging with hybrid superconducting – nanophotonic circuits Type Miscellaneous
  Year 2016 Publication arXiv Abbreviated Journal arXiv  
  Volume Issue Pages 1-20  
  Keywords waiveguide SSPD, SNSPD, imaging  
  Abstract The detection of individual photons is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multi-color imaging techniques, such as single photon spectroscopy, fluorescence resonance energy transfer microscopy and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz. We demonstrate multi-detector devices for telecommunication and visible wavelengths and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting-nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength division multiplexing on a chip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1334  
Permanent link to this record
 

 
Author Arutyunov, K. Y.; Ramos-Álvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol’tsman, G. N. url  openurl
  Title Quasi-1-dimensional superconductivity in highly disordered NbN nanowires Type Miscellaneous
  Year 2016 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords narrow NbN nanowires, BCS  
  Abstract The topic of superconductivity in strongly disordered materials has attracted a significant attention. In particular vivid debates are related to the subject of intrinsic spatial inhomogeneity responsible for non-BCS relation between the superconducting gap and the pairing potential. Here we report experimental study of electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. We find that conventional models based on phase slip concept provide reasonable fits for the shape of the R(T) transition curve. Temperature dependence of the critical current follows the text-book Ginzburg-Landau prediction for quasi-one-dimensional superconducting channel Ic~(1-T/Tc)^3/2. Hence, one may conclude that the intrinsic electronic inhomogeneity either does not exist in our structures, or, if exist, does not affect their resistive state properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1332 Approved no  
  Call Number Serial 1338  
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, A.; Korneev, A.; Chulkova, G.; Korneeva, Y.; Mikhailov, M.; Devizenko, A.; Kozorezov, A.; Goltsman, G. url  openurl
  Title Electron-phonon relaxation time in ultrathin tungsten silicon film Type Miscellaneous
  Year 2018 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords WSi film  
  Abstract Using amplitude-modulated absorption of sub-THz radiation (AMAR) method, we studied electron-phonon relaxation in thin disordered films of tungsten silicide. We found a response time ~ 800 ps at critical temperature Tc = 3.4 K, which scales as minus 3 in the temperature range from 1.8 to 3.4 K. We discuss mechanisms, which can result in a strong phonon bottle-neck effect in a few nanometers thick film and yield a substantial difference between the measured time, characterizing response at modulation frequency, and the inelastic electron-phonon relaxation time. We estimate the electron-phonon relaxation time to be in the range ~ 100-200 ps at 3.4 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1341 Approved no  
  Call Number Serial 1340  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: