toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Korneeva, Y.; Florya, I.; Vdovichev, S.; Moshkova, M.; Simonov, N.; Kaurova, N.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title Comparison of hot spot formation in nbn and mon thin superconducting films after photon absorption Type Journal Article
  Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 27 Issue 4 Pages 1-4  
  Keywords (up) MoNx SSPD  
  Abstract In superconducting single-photon detectors (SSPD), the efficiency of local suppression of superconductivity and hotspot formation is controlled by diffusivity and electron-phonon interaction time. Here, we selected a material, 3.6-nm-thick MoNx film, which features diffusivity close to those of NbN traditionally used for SSPD fabrication, but with electron-phonon interaction time an order of magnitude larger. In MoN ∞ detectors, we study the dependence of detection efficiency on bias current, photon energy, and strip width, and compare it with NbN SSPD. We observe nonlinear current-energy dependence in MoNx SSPD and more pronounced plateaus in dependences of detection efficiency on bias current, which we attribute to longer electron-phonon interaction time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1325  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Manova, N. N.; Florya, I. N.; Mikhailov, M. Y.; Dobrovolskiy, O. V.; Korneev, A. A.; Vodolazov, D. Y. url  doi
openurl 
  Title Different single-photon response of wide and narrow superconducting MoxSi1−x strips Type Journal Article
  Year 2020 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 13 Issue 2 Pages 024011 (1 to 7)  
  Keywords (up) MoSi SSPD, SNSPD  
  Abstract The photon count rate (PCR) of superconducting single-photon detectors made of MoxSi1−x films shaped as a 2-μm-wide strip and a 115-nm-wide meander strip line is studied experimentally as a function of the dc biasing current at different values of the perpendicular magnetic field. For the wide strip, a crossover current Icross is observed, below which the PCR increases with an increasing magnetic field and above which it decreases. This behavior contrasts with the narrow MoxSi1−x meander, for which no crossover current is observed, thus suggesting different photon-detection mechanisms in the wide and narrow strips. Namely, we argue that in the wide strip the absorbed photon destroys superconductivity locally via the vortex-antivortex mechanism for the emergence of resistance, while in the narrow meander superconductivity is destroyed across the whole strip line, forming a hot belt. Accordingly, the different photon-detection mechanisms associated with vortices and the hot belt determine the qualitative difference in the dependence of the PCR on the magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1790  
Permanent link to this record
 

 
Author Komrakova, S.; Javadzade, J.; Vorobyov, V.; Bolshedvorskii, S.; Soshenko, V.; Akimov, A.; Kovalyuk, V.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title On-chip controlled placement of nanodiamonds with a nitrogen-vacancy color centers (NV) Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051046 (1 to 4)  
  Keywords (up) nanodiamonds, NV-centers  
  Abstract Here we studied the fabrication technique of a kilopixel array of nanodiamonds with a nitrogen-vacancy color centers (NV) on top of the chip and measured the second-order correlation function deep, clearly demonstrated the presence of single-photon sources. The controlled position of nanodiamonds, determined from the measurement of second-order correlation fiction, was realize, as well as the yield of optimized technique equals 12.5% is shown.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1298  
Permanent link to this record
 

 
Author Arutyunov, K. Y.; Ramos-Álvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol’tsman, G. N. url  openurl
  Title Quasi-1-dimensional superconductivity in highly disordered NbN nanowires Type Miscellaneous
  Year 2016 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) narrow NbN nanowires, BCS  
  Abstract The topic of superconductivity in strongly disordered materials has attracted a significant attention. In particular vivid debates are related to the subject of intrinsic spatial inhomogeneity responsible for non-BCS relation between the superconducting gap and the pairing potential. Here we report experimental study of electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. We find that conventional models based on phase slip concept provide reasonable fits for the shape of the R(T) transition curve. Temperature dependence of the critical current follows the text-book Ginzburg-Landau prediction for quasi-one-dimensional superconducting channel Ic~(1-T/Tc)^3/2. Hence, one may conclude that the intrinsic electronic inhomogeneity either does not exist in our structures, or, if exist, does not affect their resistive state properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1332 Approved no  
  Call Number Serial 1338  
Permanent link to this record
 

 
Author Korneeva, Y.; Sidorova, M.; Semenov, A.; Krasnosvobodtsev, S.; Mitsen, K.; Korneev, A.; Chulkova, G.; Goltsman, G. url  doi
openurl 
  Title Comparison of hot-spot formation in NbC and NbN single-photon detectors Type Journal Article
  Year 2016 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 26 Issue 3 Pages 1-4  
  Keywords (up) NbC, NbN SSPD, SNSPD  
  Abstract We report an experimental investigation of the hot-spot evolution in superconducting single-photon detectors made of disordered superconducting materials with different diffusivity and energy downconversion time values, i.e., 33-nm-thick NbN and 23-nm-thick NbC films. We have demonstrated that, in NbC film, only 405-nm photons produce sufficiently large hot spot to trigger a single-photon response. The dependence of detection efficiency on bias current for 405-nm photons in NbC is similar to that for 3400-nm photons in NbN. In NbC, large diffusivity and downconversion time result in 1-D critical current suppression profile compared with the usual 2-D profile in NbN.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1348  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: