toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gol'tsman, G. N.; Korneev, A.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Minaeva, O.; Smirnov, K.; Voronov, B.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
  Year 2005 Publication (down) Phys. Stat. Sol. (C) Abbreviated Journal Phys. Stat. Sol. (C)  
  Volume 2 Issue 5 Pages 1480-1488  
  Keywords NbN SSPD, SNSPD  
  Abstract We present our progress on the research and development of NbN superconducting single‐photon detectors (SSPD's) for ultrafast counting of near‐infrared photons for secure quantum communications. Our SSPD's operate in the quantum detection mode based on the photon‐induced hotspot formation and subsequent development of a transient resistive barrier across an ultrathin and submicron‐width superconducting stripe. The devices are fabricated from 4‐nm‐thick NbN films and kept in the 4.2‐ to 2‐K temperature range. The detector experimental quantum efficiency in the photon‐counting mode reaches above 40% for the visible light and up to 30% in the 1.3‐ to 1.55‐µm wavelength range with dark counts below 0.01 per second. The experimental real‐time counting rate is above 2 GHz and is limited by our readout electronics. The SSPD's timing jitter is below 18 ps, and the best‐measured value of the noise‐equivalent power (NEP) is 5 × 10–21 W/Hz1/2 at 1.3 µm. In terms of quantum efficiency, timing jitter, and maximum counting rate, our NbN SSPD's significantly outperform semiconductor avalanche photodiodes and photomultipliers in the 1.3‐ to 1.55‐µm range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1610-1634 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1479  
Permanent link to this record
 

 
Author Shein, K. V.; Zarudneva, A. A.; Emel’yanova, V. O.; Logunova, M. A.; Chichkov, V. I.; Sobolev, A.S.; Zav’yalov, V. V.; Lehtinen, J. S.; Smirnov, E. O.; Korneeva, Y. P.; Korneev, A. A.; Arutyunov, K. Y. url  doi
openurl 
  Title Superconducting microstructures with high impedance Type Journal Article
  Year 2020 Publication (down) Phys. Solid State Abbreviated Journal Phys. Solid State  
  Volume 62 Issue 9 Pages 1539-1542  
  Keywords superconducting channels, SIS, inetic inductance, tunneling contacts, high impedance  
  Abstract The transport properties of two types of quasi-one-dimensional superconducting microstructures were investigated at ultra-low temperatures: the narrow channels close-packed in the shape of meander, and the chains of tunneling contacts “superconductor-insulator-superconductor.” Both types of the microstructures demonstrated high value of high-frequency impedance and-or the dynamic resistance. The study opens up potential for using of such structures as current stabilizing elements with zero dissipation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7834 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1789  
Permanent link to this record
 

 
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N. url  doi
openurl 
  Title Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films Type Journal Article
  Year 2018 Publication (down) Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 97 Issue 18 Pages 184512 (1 to 13)  
  Keywords WSi films, diffusion constant, SSPD, SNSPD  
  Abstract We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe−ph∼140–190 ps at TC=3.4K, supporting the results of earlier measurements by independent techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1305  
Permanent link to this record
 

 
Author Vodolazov, D. Y.; Korneeva, Y. P.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Vortex-assisted mechanism of photon counting in a superconducting nanowire single-photon detector revealed by external magnetic field Type Journal Article
  Year 2015 Publication (down) Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 92 Issue 10 Pages 104503 (1 to 9)  
  Keywords SSPD, SNSPD  
  Abstract We use an external magnetic field to probe the detection mechanism of a superconducting nanowire single-photon detector. We argue that the hot belt model (which assumes partial suppression of the superconducting order parameter Δ across the whole width of the superconducting nanowire after absorption of the photon) does not explain observed weak-field dependence of the photon count rate (PCR) for photons with λ=450nm and noticeable decrease of PCR (with increasing the magnetic field) in a range of the currents for photons with wavelengths λ=450–1200nm. Found experimental results for all studied wavelengths can be explained by the vortex hot spot model (which assumes partial suppression of Δ in the area with size smaller than the width of the nanowire) if one takes into account nucleation and entrance of the vortices to the photon induced hot spot and their pinning by the hot spot with relatively large size and strongly suppressed Δ.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1343  
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Gol'tsman, G.; Hübers, H.-W. url  doi
openurl 
  Title Effect of magnetic field on the photon detection in thin superconducting meander structures Type Journal Article
  Year 2014 Publication (down) Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 89 Issue 10 Pages 104513 (1 to 7)  
  Keywords NbN SSPD, SNSPD  
  Abstract We have studied the influence of an externally applied magnetic field on the photon and dark count rates of meander-type niobium nitride superconducting nanowire single-photon detectors. Measurements have been performed at a temperature of 4.2 K, and magnetic fields up to 250 mT have been applied perpendicularly to the meander plane. While photon count rates are field independent at weak applied fields, they show a strong dependence at fields starting from approximately ±25 mT. This behavior, as well as the magnetic field dependence of the dark count rates, is in good agreement with the recent theoretical model of vortex-assisted photon detection and spontaneous vortex crossing in narrow superconducting lines. However, the local reduction of the superconducting free energy due to photon absorption, which is the fitting parameter in the model, increases much slower with the photon energy than the model predicts. Furthermore, changes in the free-energy during photon counts and dark counts depend differently on the current that flows through the meander. This indicates that photon counts and dark counts occur in different parts of the meander.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1367  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: