toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Divochiy, Aleksander; Marsili, Francesco; Bitauld, David; Gaggero, Alessandro; Leoni, Roberto; Mattioli, Francesco; Korneev, Alexander; Seleznev, Vitaliy; Kaurova, Nataliya; Minaeva, Olga; Gol'tsman, Gregory; Lagoudakis, Konstantinos G.; Benkhaoul, Moushab; Lévy, Francis; Fiore, Andrea url  doi
openurl 
  Title Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths Type Journal Article
  Year 2008 Publication Nat. Photon. Abbreviated Journal Nat. Photon.  
  Volume 2 Issue 5 Pages 302-306  
  Keywords SSPD, photon-number-resolving  
  Abstract Optical-to-electrical conversion, which is the basis of the operation of optical detectors, can be linear or nonlinear. When high sensitivities are needed, single-photon detectors are used, which operate in a strongly nonlinear mode, their response being independent of the number of detected photons. However, photon-number-resolving detectors are needed, particularly in quantum optics, where n-photon states are routinely produced. In quantum communication and quantum information processing, the photon-number-resolving functionality is key to many protocols, such as the implementation of quantum repeaters1 and linear-optics quantum computing2. A linear detector with single-photon sensitivity can also be used for measuring a temporal waveform at extremely low light levels, such as in long-distance optical communications, fluorescence spectroscopy and optical time-domain reflectometry. We demonstrate here a photon-number-resolving detector based on parallel superconducting nanowires and capable of counting up to four photons at telecommunication wavelengths, with an ultralow dark count rate and high counting frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 916  
Permanent link to this record
 

 
Author (up) Korneev, Alexander; Golt'sman, Gregory; Pernice, Wolfram url  openurl
  Title Photonic integration meets single-photon detection Type Miscellaneous
  Year 2015 Publication Laser Focus World Abbreviated Journal Laser Focus World  
  Volume 51 Issue 5 Pages 47-50  
  Keywords optical waveguide SSPD, SNSPD  
  Abstract By embedding superconducting nanowire single-photon detectors (SNSPDs) in nanophotonic circuits, these waveguide-integrated detectors are a key building block for future on-chip quantum computing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 1126  
Permanent link to this record
 

 
Author (up) Korneev, Alexander; Korneeva, Yulia; Florya, Irina; Elezov, Michael; Manova, Nadezhda; Tarkhov, Michael; An, Pavel; Kardakova, Anna; Isupova, Anastasiya; Chulkova, Galina; Voronov, Boris openurl 
  Title Recent advances in superconducting NbN single-photon detector development Type Conference Article
  Year 2011 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 8072 Issue Pages 807202 (1 to 10)  
  Keywords SSPD  
  Abstract Superconducting single-photon detector (SSPD) is a planar nanostructure patterned from 4-nm-thick NbN film deposited on sapphire substrate. The sensitive element of the SSPD is 100-nm-wide NbN strip. The device is operated at liquid helium temperature. Absorption of a photon leads to a local suppression of superconductivity producing subnanosecond-long voltage pulse. In infrared (at 1550 nm and longer wavelengths) SSPD outperforms avalanche photodiodes in terms of detection efficiency (DE), dark counts rate, maximum counting rate and timing jitter. Efficient single-mode fibre coupling of the SSPD enabled its usage in many applications ranging from single-photon sources research to quantum cryptography. Recently we managed to improve the SSPD performance and measured 25% detection efficiency at 1550 nm wavelength and dark counts rate of 10 s-1. We also improved photon-number resolving SSPD (PNR-SSPD) which realizes a spatial multiplexing of incident photons enabling resolving of up to 4 simultaneously absorbed photons. Another improvement is the increase of the photon absorption using a λ/4 microcavity integrated with the SSPD. And finally in our strive to increase the DE at longer wavelengths we fabricated SSPD with the strip almost twice narrower compared to the standard 100 nm and demonstrated that in middle infrared (about 3 μm wavelength) these devices have DE several times higher compared to the traditional SSPDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 663  
Permanent link to this record
 

 
Author (up) Korneev, Alexander; Vachtomin, Yury; Minaeva, Olga; Divochiy, Alexander; Smirnov, Konstantin; Okunev, Oleg; Gol'tsman, Gregory; Zinoni, C.; Chauvin, Nicolas; Balet, Laurent; Marsili, Francesco; Bitauld, David; Alloing, Blandine; Li, Lianhe; Fiore, Andrea; Lunghi, L.; Gerardino, Annamaria; Halder, Matthäus; Jorel, Corentin; Zbinden, Hugo url  doi
openurl 
  Title Single-photon detection system for quantum optics applications Type Journal Article
  Year 2007 Publication IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.  
  Volume 13 Issue 4 Pages 944-951  
  Keywords SSPD, SNSPD  
  Abstract We describe the design and characterization of a fiber-coupled double-channel single-photon detection system based on superconducting single-photon detectors (SSPD), and its application for quantum optics experiments on semiconductor nanostructures. When operated at 2-K temperature, the system shows 10% quantum efficiency at 1.3-¿m wavelength with dark count rate below 10 counts per second and timing resolution <100 ps. The short recovery time and absence of afterpulsing leads to counting frequencies as high as 40 MHz. Moreover, the low dark count rate allows operation in continuous mode (without gating). These characteristics are very attractive-as compared to InGaAs avalanche photodiodes-for quantum optics experiments at telecommunication wavelengths. We demonstrate the use of the system in time-correlated fluorescence spectroscopy of quantum wells and in the measurement of the intensity correlation function of light emitted by semiconductor quantum dots at 1300 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-260X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 430  
Permanent link to this record
 

 
Author (up) Korneeva, Yuliya; Florya, Irina; Vdovichev, Sergey; Moshkova, Mariya; Simonov, Nikita; Kaurova, Natalia; Korneev, Alexander; Goltsman, Gregory doi  openurl
  Title Comparison of hot-spot formation in NbN and MoN thin superconducting films after photon absorption Type Conference Article
  Year 2017 Publication IEEE Transactions on Applied Superconductivity Abbreviated Journal IEEE Transactions on Applied Superconductiv  
  Volume 27 Issue 4 Pages 5  
  Keywords Thin film devices, Superconducitng photoncounting devices, Nanowire single-photon detectors  
  Abstract In superconducting single-photon detectors SSPD

the efficiency of local suppression of superconductivity and hotspot

formation is controlled by diffusivity and electron-phonon

interaction time. Here we selected a material, 3.6-nm-thick MoNx

film, which features diffusivity close to those of NbN traditionally

used for SSPD fabrication, but with electron-phonon interaction

time an order of magnitude larger. In MoNx detectors we study

the dependence of detection efficiency on bias current, photon

energy, and strip width and compare it with NbN SSPD. We

observe non-linear current-energy dependence in MoNx SSPD

and more pronounced plateaus in dependences of detection

efficiency on bias current which we attribute to longer electronphonon

interaction time.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1114  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: