|   | 
Details
   web
Records
Author Pyatkov, Felix; Khasminskaya, Svetlana; Fütterling, Valentin; Fechner, Randy; Słowik, Karolina; Ferrari, Simone; Kahl1, Oliver; Kovalyuk, Vadim; Rath, Patrik; Vetter, Andreas; Flavel, Benjamin S.; Hennrich, Frank; Kappes, Manfred M.; Gol’tsman, Gregory N.; Korneev, Alexander; Rockstuhl, Carsten; Krupke, Ralph; Pernice, Wolfram H. P.
Title Carbon nanotubes as exceptional electrically driven on-chip light sources Type Miscellaneous
Year 2016 Publication 2Physics Abbreviated Journal 2Physics
Volume Issue Pages
Keywords (up) carbon nanotubes, CNT
Abstract Carbon nanotubes (CNTs) belong to the most exciting objects of the nanoworld. Typically, around 1 nm in diameter and several microns long, these cylindrically shaped carbon-based structures exhibit a number of exceptional mechanical, electrical and optical characteristics [1]. In particular, they are promising ultra-small light sources for the next generation of optoelectronic devices, where electrical components are interconnected with photonic circuits.

Few years ago, we demonstrated that electically driven CNTs can serve as waveguide-integrated light sources [2]. Progress in the field of nanotube sorting, dielectrophoretical site-selective deposition and efficient light coupling into underlying substrate has made CNTs suitable for wafer-scale fabrication of active hybrid nanophotonic devices [2,3].

Recently we presented a nanotube-based waveguide integrated light emitters with tailored, exceptionally narrow emission-linewidths and short response times [4]. This allows conversion of electrical signals into well-defined optical signals directly within an optical waveguide, as required for future on-chip optical communication. Schematics and realization of this device is shown in Figure 1. The devices were manufactured by etching a photonic crystal waveguide into a dielectric layer following electron beam lithography. Photonic crystals are nanostructures that are also used by butterflies to give the impression of color on their wings. The same principle has been used in this study to select the color of light emitted by the CNT. The precise dimensions of the structure were numerically simulated to tailor the properties of the final device. Metallic contacts in the vicinity to the waveguide were fabricated to provide electrical access to CNT emitters. Finally, CNTs, sorted by structural and electronic properties, were deposited from a solution across the waveguide using dielectrophoresis, which is an electric-field-assisted deposition technique.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2372-1782 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1219
Permanent link to this record
 

 
Author Sobolewski, Roman; Xu, Ying; Zheng, Xuemei; Williams, Carlo; Zhang, Jin; Verevkin, Aleksandr; Chulkova, Galina; Korneev, Alexander; Lipatov, Andrey; Okunev, Oleg; Smirnov, Konstantin; Gol'tsman, Gregory N.
Title Spectral sensitivity of the NbN single-photon superconducting detector Type Journal Article
Year 2002 Publication IEICE Trans. Electron. Abbreviated Journal IEICE Trans. Electron.
Volume E85-C Issue 3 Pages 797-802
Keywords (up) NbN SSPD, SNSPD
Abstract We report our studies on the spectral sensitivity of superconducting NbN thin-film single-photon detectors (SPD's) capable of GHz counting rates of visible and near-infrared photons. In particular, it has been shown that a NbN SPD is sensitive to 1.55-µm wavelength radiation and can be used for quantum communication. Our SPD's exhibit experimentally measured intrinsic quantum efficiencies from 20% at 800 nm up to 1% at 1.55-µm wavelength. The devices demonstrate picosecond response time (<100 ps, limited by our readout system) and negligibly low dark counts. Spectral dependencies of photon counting of continuous-wave, 0.4-µm to 3.5-µm radiation, and 0.63-µm, 1.33-µm, and 1.55-µm laser-pulsed radiations are presented for the single-stripe-type and meander-type devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1531
Permanent link to this record
 

 
Author Korneev, Alexander; Golt'sman, Gregory; Pernice, Wolfram
Title Photonic integration meets single-photon detection Type Miscellaneous
Year 2015 Publication Laser Focus World Abbreviated Journal Laser Focus World
Volume 51 Issue 5 Pages 47-50
Keywords (up) optical waveguide SSPD, SNSPD
Abstract By embedding superconducting nanowire single-photon detectors (SNSPDs) in nanophotonic circuits, these waveguide-integrated detectors are a key building block for future on-chip quantum computing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 1126
Permanent link to this record
 

 
Author Korneev, Alexander; Korneeva, Yulia; Florya, Irina; Elezov, Michael; Manova, Nadezhda; Tarkhov, Michael; An, Pavel; Kardakova, Anna; Isupova, Anastasiya; Chulkova, Galina; Voronov, Boris
Title Recent advances in superconducting NbN single-photon detector development Type Conference Article
Year 2011 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 8072 Issue Pages 807202 (1 to 10)
Keywords (up) SSPD
Abstract Superconducting single-photon detector (SSPD) is a planar nanostructure patterned from 4-nm-thick NbN film deposited on sapphire substrate. The sensitive element of the SSPD is 100-nm-wide NbN strip. The device is operated at liquid helium temperature. Absorption of a photon leads to a local suppression of superconductivity producing subnanosecond-long voltage pulse. In infrared (at 1550 nm and longer wavelengths) SSPD outperforms avalanche photodiodes in terms of detection efficiency (DE), dark counts rate, maximum counting rate and timing jitter. Efficient single-mode fibre coupling of the SSPD enabled its usage in many applications ranging from single-photon sources research to quantum cryptography. Recently we managed to improve the SSPD performance and measured 25% detection efficiency at 1550 nm wavelength and dark counts rate of 10 s-1. We also improved photon-number resolving SSPD (PNR-SSPD) which realizes a spatial multiplexing of incident photons enabling resolving of up to 4 simultaneously absorbed photons. Another improvement is the increase of the photon absorption using a λ/4 microcavity integrated with the SSPD. And finally in our strive to increase the DE at longer wavelengths we fabricated SSPD with the strip almost twice narrower compared to the standard 100 nm and demonstrated that in middle infrared (about 3 μm wavelength) these devices have DE several times higher compared to the traditional SSPDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 663
Permanent link to this record
 

 
Author Divochiy, Aleksander; Marsili, Francesco; Bitauld, David; Gaggero, Alessandro; Leoni, Roberto; Mattioli, Francesco; Korneev, Alexander; Seleznev, Vitaliy; Kaurova, Nataliya; Minaeva, Olga; Gol'tsman, Gregory; Lagoudakis, Konstantinos G.; Benkhaoul, Moushab; Lévy, Francis; Fiore, Andrea
Title Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths Type Journal Article
Year 2008 Publication Nat. Photon. Abbreviated Journal Nat. Photon.
Volume 2 Issue 5 Pages 302-306
Keywords (up) SSPD, photon-number-resolving
Abstract Optical-to-electrical conversion, which is the basis of the operation of optical detectors, can be linear or nonlinear. When high sensitivities are needed, single-photon detectors are used, which operate in a strongly nonlinear mode, their response being independent of the number of detected photons. However, photon-number-resolving detectors are needed, particularly in quantum optics, where n-photon states are routinely produced. In quantum communication and quantum information processing, the photon-number-resolving functionality is key to many protocols, such as the implementation of quantum repeaters1 and linear-optics quantum computing2. A linear detector with single-photon sensitivity can also be used for measuring a temporal waveform at extremely low light levels, such as in long-distance optical communications, fluorescence spectroscopy and optical time-domain reflectometry. We demonstrate here a photon-number-resolving detector based on parallel superconducting nanowires and capable of counting up to four photons at telecommunication wavelengths, with an ultralow dark count rate and high counting frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 916
Permanent link to this record