Records |
Author |
Gol'tsman, G. N.; Goghidze, I. G.; Kouminov, P. B.; Karasik, B. S.; Semenov, A. D.; Gershenzon, E. M. |
Title |
Influence of grain boundary weak links on the nonequilibrium response of YBaCuO thin films to short laser pulses |
Type |
Journal Article |
Year |
1994 |
Publication |
J. Supercond. |
Abbreviated Journal |
J. Supercond. |
Volume |
7 |
Issue |
4 |
Pages |
751-755 |
Keywords |
YBCO HTS detector, nonequilibrium response |
Abstract |
The transient voltage response in both epitaxial and granular YBaCuO thin films to 80 ps pulses of YAG∶Nd laser radiation of wavelength 0.63 and 1.54 μm was studied. In the normal and resistive states both types of films demonstrate two components: a nonequilibrium picosecond component and a bolometric nanosecond one. The normalized amplitudes are almost the same for all films. In the superconducting state we observed a kinetic inductive response and two-component shape after integration. The normalized amplitude of the response in granular films is up to five orders of magnitude larger than in epitaxial films. We interpret the nonequilibrium response in terms of a suppression of the order parameter by the excess of quasiparticles followed by the change of resistance in the normal and resistive states or kinetic inductance in the superconducting state. The sharp rise of inductive response in granular films is explained both by a diminishing of the cross section for current percolation through the disordered network of Josephson weak links and by a decrease of condensate density in neighboring regions. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0896-1107 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1636 |
Permanent link to this record |
|
|
|
Author |
Gol'tsman, G. N.; Kouminov, P.; Goghidze, I.; Gershenzon, E. M. |
Title |
Nonequilibrium kinetic inductive response of YBaCuO thin films to low-power laser pulses |
Type |
Journal Article |
Year |
1994 |
Publication |
Phys. C: Supercond. |
Abbreviated Journal |
Phys. C: Supercond. |
Volume |
235-240 |
Issue |
|
Pages |
1979-1980 |
Keywords |
YBCO HTS KID |
Abstract |
Transient non-equilibrium kinetic inductive voltage response of YBaCuO thin films to 20 ps pulses of YAG:Nd laser radiation with 0.63 μm and 1.5 μm wavelength has been revealed. By increasing the sensitivity of 100 ps resolution time registration system and diminishing light intensity (fluence 0.1-1 μJ2/cm2) and transport current (density j≤105 A/cm2) we observed a perculiar bipolar signal form with nearly equal amplitudes of each sign. The integration of the kinetic inductive response over time gives the result which is qualitatively of the same form as the response in the resistive and normal states: nonequilibrium picosecond scale component followed by bolometric nanosecond. Nonequilibrium response is interpreted as suppression of order parameter by excess of quasiparticles followed by a change in resistance in the resistive state and kinetic inductance in superconductive state. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0921-4534 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1634 |
Permanent link to this record |
|
|
|
Author |
Gol'tsman, G.; Kouminov, P.; Goghidze, I.; Gershenzon, E. |
Title |
Nonequilibrium kinetic inductive response of YBCO thin films to low power laser pulses |
Type |
Journal Article |
Year |
1995 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
5 |
Issue |
2 |
Pages |
2591-2594 |
Keywords |
YBCO HTS KID |
Abstract |
We have discovered a transient nonequilibrium kinetic inductive voltage response of YBCO thin films to 20 ps pulses of YAG:Nd laser radiation with 0.63 /spl mu/m and 1.54 /spl mu/m wavelength. By increasing the sensitivity of the read-out system with 100 ps resolution time and diminishing the light intensity (fluence 0.1-2 /spl mu/J/cm/sup 2/) and transport current (density /spl les/10/sup 5/ A/cm/sup 2/) we were able to observe a peculiar bipolar signal form with nearly equal amplitudes for each sign. The integration of the kinetic inductive response over time gives the result which is qualitatively, of the same form as the response in the resistive and normal states: the nonequilibrium picosecond scale component is followed by the bolometric nanosecond component. The nonequilibrium response is interpreted as suppression of the order parameter by excess quasiparticles followed by a change both in resistance (for the resistive state) and in kinetic inductance (for the superconducting state). |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1051-8223 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1621 |
Permanent link to this record |
|
|
|
Author |
Goltsman, G.; Korneev, A.; Izbenko, V.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, R. |
Title |
Nano-structured superconducting single-photon detectors |
Type |
Journal Article |
Year |
2004 |
Publication |
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Abbreviated Journal |
|
Volume |
520 |
Issue |
1-3 |
Pages |
527-529 |
Keywords |
NbN SSPD, SNSPD |
Abstract |
NbN detectors, formed into meander-type, 10×10-μm2 area structures, based on ultrathin (down to 3.5-nm thickness) and nanometer-width (down to below 100 nm) NbN films are capable of efficiently detecting and counting single photons from the ultraviolet to near-infrared optical wavelength range. Our best devices exhibit QE >15% in the visible range and ∼10% in the 1.3–1.5-μm infrared telecommunication window. The noise equivalent power (NEP) ranges from ∼10−17 W/Hz1/2 at 1.5 μm radiation to ∼10−19 W/Hz1/2 at 0.56 μm, and the dark counts are over two orders of magnitude lower than in any semiconducting competitors. The intrinsic response time is estimated to be <30 ps. Such ultrafast detector response enables a very high, GHz-rate real-time counting of single photons. Already established applications of NbN photon counters are non-invasive testing and debugging of VLSI Si CMOS circuits and quantum communications. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0168-9002 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1495 |
Permanent link to this record |
|
|
|
Author |
Gol’tsman, G. N.; Kouminov, P. B.; Goghidze, I. G.; Karasik, B. S.; Gershenzon, E. M. |
Title |
Nonbolometric and fast bolometric responses of YBaCuO thin films in superconducting, resistive, and normal states |
Type |
Conference Article |
Year |
1994 |
Publication |
Proc. SPIE |
Abbreviated Journal |
Proc. SPIE |
Volume |
2159 |
Issue |
|
Pages |
81-86 |
Keywords |
YBCO HTS HEB, nonbolornetric |
Abstract |
The transient voltage response in both epitaxial and granular YBaCuO thin films to 20 ps pulses of YAG:Nd laser radiation with 0.63 micrometers and 1.54 micrometers was studied. In normal and resistive states both types of films demonstrate two components: nonequilibrium picosecond component and following bolometric nanosecond. The normalized amplitudes are almost the same for all films. In superconducting state we observed a kinetic inductive response and two-component shape after integration. The normalized amplitude of the response in granular films is up to several orders of magnitude larger than in epitaxial films. We interpret the nonequilibrium response in terms of a suppression of order parameter by the excess of quasiparticles followed by the change of resistance in normal and resistive states or kinetic inductance in superconducting state. The sharp rise of inductive response in granular films is explained both by a diminishing of the crossection for current percolation through the disordered network os Josephson weak links and by a decrease of condensate density in neighboring regions. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
SPIE |
Place of Publication |
|
Editor |
Nahum, M.; Villegier, J.-C. |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
High-Temperature Superconducting Detectors: Bolometric and Nonbolometric |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1641 |
Permanent link to this record |