|   | 
Details
   web
Records
Author (up) Lobanov, Y. V.; Shcherbatenko, M. L.; Semenov, A. V.; Kovalyuk, V. V.; Korneev, A. A.; Goltsman, G. N.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Heterodyne spectroscopy with superconducting single-photon detector Type Conference Article
Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 132 Issue Pages 01005
Keywords SSPD mixer, SNSPD
Abstract We demonstrate successful operation of a Superconducting Single Photon Detector (SSPD) as the core element in a heterodyne receiver. Irradiating the SSPD by both a local oscillator power and signal power simultaneously, we observed beat signal at the intermediate frequency of a few MHz. Gain bandwidth was found to coincide with the detector single pulse width, where the latter depends on the detector kinetic inductance, determined by the superconducting nanowire length.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1205
Permanent link to this record
 

 
Author (up) Lobanov, Y.; Shcherbatenko, M.; Semenov, A.; Kovalyuk, V.; Kahl, O.; Ferrari, S.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B. M.; Pernice, W. H. P.; Gol'tsman, G. N.
Title Superconducting nanowire single photon detector for coherent detection of weak signals Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-5
Keywords NbN SSPD mixer, SNSPD, nanophotonic waveguide
Abstract Traditional photon detectors are operated in the direct detection mode, counting incident photons with a known quantum efficiency. Here, we have investigated a superconducting nanowire single photon detector (SNSPD) operated as a photon counting mixer at telecommunication wavelength around 1.5 μm. This regime of operation combines excellent sensitivity of a photon counting detector with excellent spectral resolution given by the heterodyne technique. Advantageously, we have found that low local oscillator (LO) power of the order of hundreds of femtowatts to a few picowatts is sufficient for clear observation of the incident test signal with the sensitivity approaching the quantum limit. With further optimization, the required LO power could be significantly reduced, which is promising for many practical applications, such as the development of receiver matrices or recording ultralow signals at a level of less-than-one-photon per second. In addition to a traditional NbN-based SNSPD operated with normal incidence coupling, we also use detectors with a travelling wave geometry, where a NbN nanowire is placed on the top of a Si 3 N 4 nanophotonic waveguide. This approach is fully scalable and a large number of devices could be integrated on a single chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1206
Permanent link to this record
 

 
Author (up) Ozhegov, R.; Elezov, M.; Kurochkin, Y.; Kurochkin, V.; Divochiy, A.; Kovalyuk, V.; Vachtomin, Y.; Smirnov, K.; Goltsman, G.
Title Quantum key distribution over 300 Type Conference Article
Year 2014 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 9440 Issue Pages 1F (1 to 9)
Keywords SSPD, SNSPD applicatins, quantum key distribution, QKD
Abstract We discuss the possibility of polarization state reconstruction and measurement over 302 km by Superconducting Single- Photon Detectors (SSPDs). Because of the excellent characteristics and the possibility to be effectively coupled to singlemode optical fiber many applications of the SSPD have already been reported. The most impressive one is the quantum key distribution (QKD) over 250 km distance. This demonstration shows further possibilities for the improvement of the characteristics of quantum-cryptographic systems such as increasing the bit rate and the quantum channel length, and decreasing the quantum bit error rate (QBER). This improvement is possible because SSPDs have the best characteristics in comparison with other single-photon detectors. We have demonstrated the possibility of polarization state reconstruction and measurement over 302.5 km with superconducting single-photon detectors. The advantage of an autocompensating optical scheme, also known as “plugandplay” for quantum key distribution, is high stability in the presence of distortions along the line. To increase the distance of quantum key distribution with this optical scheme we implement the superconducting single photon detectors (SSPD). At the 5 MHz pulse repetition frequency and the average photon number equal to 0.4 we measured a 33 bit/s quantum key generation for a 101.7 km single mode ber quantum channel. The extremely low SSPD dark count rate allowed us to keep QBER at 1.6% level.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Orlikovsky, A. A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Conference on Micro- and Nano-Electronics
Notes Approved no
Call Number RPLAB @ sasha @ ozhegov2014quantum Serial 1048
Permanent link to this record
 

 
Author (up) Polyakova, M.; Semenov, A. V.; Kovalyuk, V.; Ferrari, S.; Pernice, W. H. P.; Gol'tsman, G. N.
Title Protocol of measuring hot-spot correlation length for SNSPDs with near-unity detection efficiency Type Journal Article
Year 2019 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 29 Issue 5 Pages 1-5
Keywords SSPD, waveguide-integrated SNSPD, hot-spot interaction length
Abstract We present a simple quantum detector tomography protocol, which allows, without ambiguities, to measure the two-spot detection efficiency and extract the hot-spot interaction length of superconducting nanowire single photon detectors (SNSPDs) with unity intrinsic detection efficiency. We identify a significant parasitic contribution to the measured two-spot efficiency, related to an effect of the bias circuit, and find a way to rule out this contribution during data post-processing and directly in the experiment. From the data analysis for waveguide-integrated SNSPD, we find signatures of the saturation of the two-spot efficiency and hot-spot interaction length of order of 100 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1187
Permanent link to this record
 

 
Author (up) Prokhodtsov, A.; An, P.; Kovalyuk, V.; Zubkova, E.; Golikov, A.; Korneev, A.; Ferrari, S.; Pernice, W.; Goltsman, G.
Title Optimization of on-chip photonic delay lines for telecom wavelengths Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051052
Keywords optical delay lines
Abstract In this work, we experimentally studied optical delay lines on silicon nitride platform for telecomm wavelength (1550 nm). We modeled the group delay time and fabricated spiral optical delay lines with different waveguide widths and radii as well as measured their transmission. For the half etched rib waveguides we achieved the losses in the range of 3 dB/cm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1196
Permanent link to this record
 

 
Author (up) Prokhodtsov, A.; Golikov, A.; An, P.; Kovalyuk, V.; Goltsman, G.; Arakelyan, S.; Evlyukhin, A.; Kalachev, A.; Naumov, A.
Title Effect of silicon oxide coating on a silicon nitride focusing grating coupler efficiency Type Conference Article
Year 2019 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 220 Issue Pages 02009
Keywords grating coupler, SiO2
Abstract The dependence of the efficiency of the focusing grating couplers on the period and filling factor before and after deposition of the upper silicon oxide layer was experimentally studied. The obtained data are of practical importance for tunable integrated-optical devices based on silicon nitride platform.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1188
Permanent link to this record
 

 
Author (up) Prokhodtsov, A.; Kovalyuk, V.; An, P.; Golikov, A.; Shakhovoy, R.; Sharoglazova, V.; Udaltsov, A.; Kurochkin, Y.; Goltsman, G.
Title Silicon nitride Mach-Zehnder interferometer for on-chip quantum random number generation Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012118
Keywords Mach-Zehnder interferometer, MZI
Abstract In this work, we experimentally studied silicon nitride Mach-Zehnder interferometer (MZI) with two directional couplers and 400 ps optical delay line for telecom wavelength 1550 nm. We achieved the extinction ratio in a range of 0.76-13.86 dB and system coupling losses of 28-44 dB, depending on the parameters of directional couplers. The developed interferometer is promising for the use in a compact random number generator for the needs of a fully integrated quantum cryptography system, where compact design, as well as high generation speed, are needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1178
Permanent link to this record
 

 
Author (up) Pyatkov, F.; Khasminskaya, S.; Kovalyuk, V.; Hennrich, F.; Kappes, M. M.; Goltsman, G. N.; Pernice, W. H. P.; Krupke, R.
Title Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers Type Journal Article
Year 2017 Publication Beilstein J. Nanotechnol. Abbreviated Journal Beilstein J. Nanotechnol.
Volume 8 Issue Pages 38-44
Keywords carbon nanotubes; CNT; infrared; integrated optics devices; nanomaterials
Abstract Carbon nanotubes (CNTs) have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources.
Address Department of Materials and Earth Sciences, Technische Universitat Darmstadt, Darmstadt 64287, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4286 ISBN Medium
Area Expedition Conference
Notes PMID:28144563; PMCID:PMC5238692 Approved no
Call Number RPLAB @ kovalyuk @ Serial 1109
Permanent link to this record
 

 
Author (up) Rasulova, G. K.; Brunkov, P. N.; Pentin, I. V.; Kovalyuk, V. V.; Gorshkov, K. N.; Kazakov, A. Y.; Ivanov, S. Y.; Egorov, A. Y.; Sakseev, D. A.; Konnikov, S. G.
Title Mutual synchronization of two coupled self-oscillators based on GaAs/AlGaAs superlattices Type Journal Article
Year 2011 Publication Tech. Phys. Abbreviated Journal Tech. Phys.
Volume 56 Issue 6 Pages 826-830
Keywords GaAs/AlGaAs superlattices
Abstract The interaction of self-oscillators based on 30-period weakly coupled GaAs/AlGaAs superlattices is studied. The action of one self-oscillator on the other was observed for a constant bias voltage in the absence of generation of self-sustained oscillations in one of the oscillators. It is shown that induced oscillations in a forced oscillator appear due to excitation of oscillations in the system of coupled oscillators forming the electric-field domain wall at the frequency of one of the higher harmonics of a forcing oscillation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7842 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1214
Permanent link to this record
 

 
Author (up) Rath, P.; Vetter, A.; Kovalyuk, V.; Ferrari, S.; Kahl, O.; Nebel, C.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P.
Title Travelling-wave single-photon detectors integrated with diamond photonic circuits: operation at visible and telecom wavelengths with a timing jitter down to 23 ps Type Conference Article
Year 2016 Publication Integrated Optics: Devices, Mat. Technol. XX Abbreviated Journal Integrated Optics: Devices, Mat. Technol. XX
Volume 9750 Issue Pages 135-142
Keywords SSPD, Superconducting Nanowire Single-Photon Detector, SNSPD, Single Photon Detector, Diamond Photonics, Diamond Integrated Optics, Diamond Waveguides, Integrated Optics, Low Timing Jitter
Abstract We report on the design, fabrication and measurement of travelling-wave superconducting nanowire single-photon detectors (SNSPDs) integrated with polycrystalline diamond photonic circuits. We analyze their performance both in the near-infrared wavelength regime around 1600 nm and at 765 nm. Near-IR detection is important for compatibility with the telecommunication infrastructure, while operation in the visible wavelength range is relevant for compatibility with the emission line of silicon vacancy centers in diamond which can be used as efficient single-photon sources. Our detectors feature high critical currents (up to 31 μA) and high performance in terms of efficiency (up to 74% at 765 nm), noise-equivalent power (down to 4.4×10-19 W/Hz1/2 at 765 nm) and timing jitter (down to 23 ps).
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Broquin, J.-E.; Conti, G.N.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1210
Permanent link to this record