toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ferrari, S.; Kahl, O.; Kovalyuk, V.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P. url  doi
openurl 
  Title Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires Type Journal Article
  Year 2015 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 106 Issue 15 Pages 151101 (1 to 5)  
  Keywords (down) SSPD, SNSPD  
  Abstract We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.

W. H. P. Pernice acknowledges support by the DFG Grant Nos. PE 1832/1-1 and PE 1832/1-2 and the Helmholtz society through Grant No. HIRG-0005. The Ph.D. education of O. Kahl is embedded in the Karlsruhe School of Optics and Photonics (KSOP). G. N. Goltsman acknowledges support by Russian Federation President Grant HШ-1918.2014.2 and Ministry of Education and Science of the Russian Federation Contract No.: RFMEFI58614X0007. A. Korneev acknowledges support by Statement Task No. 3.1846.2014/k. V. Kovalyuk acknowledges support by Statement Task No. 2327. We also acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Württemberg through the DFG-Center for Functional Nanostructures (CFN) within subproject A6.4. We thank S. Kühn and S. Diewald for the help with device fabrication as well as B. Voronov and A. Shishkin for help with NbN thin film deposition and A. Semenov for helpful discussion about the detection mechanism of nanowire SSPD's.

The authors declare no competing financial interests.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1211  
Permanent link to this record
 

 
Author Korneev, A.; Kovalyuk, V.; Ferrari, S.; Kahl, O.; Pernice, W.; An, P.; Golikov, A.; Zubkova, E.; Goltsman, G. url  doi
openurl 
  Title Superconducting Single-Photon Detectors for Integrated Nanophotonics Circuits Type Conference Article
  Year 2017 Publication 16th ISEC Abbreviated Journal 16th ISEC  
  Volume Issue Pages 1-3  
  Keywords (down) SSPD, SNSPD  
  Abstract We present an overview of our recent achievements in integration of superconducting nanowire single-photon detectors SNSPD with dielectric optical waveguides. We are able to produce complex nanophotonics integrated circuits containing optical elements and photon detector on single chip thus producing a compact integrated platform for quantum optics applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 8314200 Serial 1200  
Permanent link to this record
 

 
Author Goltsman, G. N.; Shcherbatenko, M. L.; Lobanov, Y. V.; Kovalyuk, V. V.; Kahl, O.; Ferrari, S.; Korneev, A.; Pernice, W. H. P. url  openurl
  Title Superconducting nanowire single photon detector for coherent detection of weak optical signals Type Abstract
  Year 2016 Publication LPHYS'16 Abbreviated Journal LPHYS'16  
  Volume Issue Pages 1-2  
  Keywords (down) SSPD, SNSPD  
  Abstract Traditionally, photon detectors are operated in a direct detection mode counting incident photonswith a known quantum efficiency. This procedure allows one to detect weak sources of radiation but allthe information about its frequency is limited by the optical filtering/resonating structures used which arenot as precise as would be required for some practical applications. In this work we propose heterodynereceiver based on a photon counting mixer which would combine excellent sensitivity of a photon countingdetector and excellent spectral resolution given by the heterodyne technique. At present, Superconducting-Nanowire-Single-Photon-Detectors (SNSPDs) [1] are widely used in a variety of applications providing thebest possible combination of the sensitivity and speed. SNSPDs demonstrate lack of drawbacks like highdark count rate or autopulsing, which are common for traditional semiconductor-based photon detectors,such as avalanche photon diodes.In our study we have investigated SNSPD operated as a photon counting mixer. To fully understandits behavior in such a regime, we have utilized experimental setup based on a couple of distributedfeedback lasers irradiating at 1.5 micrometers, one of which is being the Local Oscillator (LO) and theother mimics the test signal [2]. The SNSPD was operated in the current mode and the bias currentwas slightly below of the critical current. Advantageously, we have found that LO power needed for anoptimal mixing is of the order of hundreds of femtowatts to a few picowatts, which is promising for manypractical applications, such as receiver matrices [3]. With use of the two lasers, one can observe thevoltage pulses produced by the detected photons, and the time distribution of the pulses reproduces thefrequency difference between the lasers, forming power response at the intermediate frequency which canbe captured by either an oscilloscope (an analysis of the pulse statistics is needed) or by an RF spectrumanalyzer. Photon-counting nature of the detector ensures quantum-limited sensitivity with respect to theoptical coupling achieved. In addition to the chip SNSPD with normal incidence coupling, we use thedetectors with a travelling wave geometry design [4]. In this case a NbN nanowire is placed on the topof a Si3N4 nanophotonic waveguide, thus increasing the efficient interaction length. For this reason it ispossible to achieve almost complete absorption of photons and reduce the detector footprint. This reducesthe noise of the device together with the expansion of the bandwidth. Integrated device scheme allowsus to measure the optical losses with high accuracy. Our approach is fully scalable and, along with alarge number of devices integrated on a single chip can be adapted to the mid and far IR ranges wherephoton-counting measurement may be beneficial as well [5].Acknowledgements: This work was supported in part by the Ministry of Education and Science of theRussian Federation, contract No. 14.B25.31.0007 and by RFBR grant No. 16-32-00465.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1220  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Lobanov, Y.; Semenov, A.; Kovalyuk, V.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title Coherent detection of weak signals with superconducting nanowire single photon detector at the telecommunication wavelength Type Conference Article
  Year 2017 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 10229 Issue Pages 0G (1 to 12)  
  Keywords (down) SSPD mixer, SNSPD, coherent detection, weak signal detection, superconducting nanostructures  
  Abstract Achievement of the ultimate sensitivity along with a high spectral resolution is one of the frequently addressed problems, as the complication of the applied and fundamental scientific tasks being explored is growing up gradually. In our work, we have investigated performance of a superconducting nanowire photon-counting detector operating in the coherent mode for detection of weak signals at the telecommunication wavelength. Quantum-noise limited sensitivity of the detector was ensured by the nature of the photon-counting detection and restricted by the quantum efficiency of the detector only. Spectral resolution given by the heterodyne technique and was defined by the linewidth and stability of the Local Oscillator (LO). Response bandwidth was found to coincide with the detector’s pulse width, which, in turn, could be controlled by the nanowire length. In addition, the system noise bandwidth was shown to be governed by the electronics/lab equipment, and the detector noise bandwidth is predicted to depend on its jitter. As have been demonstrated, a very small amount of the LO power (of the order of a few picowatts down to hundreds of femtowatts) was required for sufficient detection of the test signal, and eventual optimization could lead to further reduction of the LO power required, which would perfectly suit for the foreseen development of receiver matrices and the need for detection of ultra-low signals at a level of less-than-one-photon per second.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Prochazka, I.; Sobolewski, R.; James, R.B.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Photon counting applications  
  Notes Approved no  
  Call Number 10.1117/12.2267724 Serial 1201  
Permanent link to this record
 

 
Author Lobanov, Y. V.; Shcherbatenko, M. L.; Semenov, A. V.; Kovalyuk, V. V.; Korneev, A. A.; Goltsman, G. N.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title Heterodyne spectroscopy with superconducting single-photon detector Type Conference Article
  Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 132 Issue Pages 01005  
  Keywords (down) SSPD mixer, SNSPD  
  Abstract We demonstrate successful operation of a Superconducting Single Photon Detector (SSPD) as the core element in a heterodyne receiver. Irradiating the SSPD by both a local oscillator power and signal power simultaneously, we observed beat signal at the intermediate frequency of a few MHz. Gain bandwidth was found to coincide with the detector single pulse width, where the latter depends on the detector kinetic inductance, determined by the superconducting nanowire length.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1205  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: