|   | 
Details
   web
Records
Author Komrakova, S.; Kovalyuk, V.; An, P.; Golikov, A.; Rybin, M.; Obraztsova, E.; Goltsman, G.
Title (up) Effective absorption coefficient of a graphene atop of silicon nitride nanophotonic circuit Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012135
Keywords silicon nitride O-ring resonator, ORR
Abstract In this paper, we demonstrate the results of a study of the optical absorption properties of graphene integrated with silicon nitride O-ring resonator. We fabricated an array of O-ring resonators with different graphene coverage area atop. By measuring the transmission spectra of nanophotonic devices with and without graphene, we calculated the effective absorption coefficient of the graphene on a rib silicon nitride waveguide.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1177
Permanent link to this record
 

 
Author Kuzin, A.; Kovalyuk, V.; Golikov, A.; Prokhodtsov, A.; Marakhin, A.; Ferrari, S.; Pernice, W.; Gippius, N.; Goltsman, G.
Title (up) Efficiency of focusing grating couplers versus taper length and angle Type Conference Article
Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1410 Issue Pages 012181
Keywords focusing grating coupler
Abstract Here we experimentally studied dependence of a focusing grating coupler efficiency versus taper length and angle on silicon nitride platform. As a result, we obtained a dependence for the efficiency of a focusing grating coupler on the parameters of the taper length and angle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1184
Permanent link to this record
 

 
Author An, P.; Kovalyuk, V.; Golikov, A.; Zubkova, E.; Ferrari, S.; Korneev, A.; Pernice, W.; Goltsman, G.
Title (up) Experimental optimisation of O-ring resonator Q-factor for on-chip spontaneous four wave mixing Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051047
Keywords planar O-ring resonators, Q-factor
Abstract In this paper we experimentally studied the influence of geometrical parameters of the planar O-ring resonators on its Q-factor and losses. We systematically changed the gap between the bus waveguide and the ring, as well as the width of the ring. We found the highest Q = 5×105 for gap 2.0 μm and the ring width 2 μm. This work is important for further on-chip SFWM applications since the generation rate of the biphoton field strongly depends on the quality factor as Q3
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1191
Permanent link to this record
 

 
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol’tsman, G. N.; Verevkin, A. A.; Toropov, A. I.
Title (up) Frequency bandwidth and conversion loss of a semiconductor heterodyne receiver with phonon cooling of two-dimensional electrons Type Journal Article
Year 2010 Publication Semicond. Abbreviated Journal Semicond.
Volume 44 Issue 11 Pages 1427-1429
Keywords 2DEG, AlGaAs/GaAs heterostructures mixers
Abstract The temperature and concentration dependences of the frequency bandwidth of terahertz heterodyne AlGaAs/GaAs detectors based on hot electron phenomena with phonon cooling of two-dimensional electrons have been measured by submillimeter spectroscopy with a high time resolution. At a temperature of 4.2 K, the frequency bandwidth at a level of 3 dB (f 3 dB) is varied from 150 to 250 MHz with a change in the concentration n s according to the power law f 3dB ∝ n −0.5 s due to the dominant contribution of piezoelectric phonon scattering. The minimum conversion loss of the semiconductor heterodyne detector is obtained in structures with a high carrier mobility (μ > 3 × 105 cm2 V−1 s−1 at 4.2 K).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Полоса и потери преобразования полупроводникового смесителя с фононным каналом охлаждения двумерных электронов Approved no
Call Number Serial 1216
Permanent link to this record
 

 
Author Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol'tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P.
Title (up) Fully integrated quantum photonic circuit with an electrically driven light source Type Journal Article
Year 2016 Publication Nat. Photon. Abbreviated Journal Nat. Photon.
Volume 10 Issue 11 Pages 727-732
Keywords Carbon nanotubes and fullerenes, Integrated optics, Single photons and quantum effects, Waveguide integrated single-photon detector
Abstract Photonic quantum technologies allow quantum phenomena to be exploited in applications such as quantum cryptography, quantum simulation and quantum computation. A key requirement for practical devices is the scalable integration of single-photon sources, detectors and linear optical elements on a common platform. Nanophotonic circuits enable the realization of complex linear optical systems, while non-classical light can be measured with waveguide-integrated detectors. However, reproducible single-photon sources with high brightness and compatibility with photonic devices remain elusive for fully integrated systems. Here, we report the observation of antibunching in the light emitted from an electrically driven carbon nanotube embedded within a photonic quantum circuit. Non-classical light generated on chip is recorded under cryogenic conditions with waveguide-integrated superconducting single-photon detectors, without requiring optical filtering. Because exclusively scalable fabrication and deposition methods are used, our results establish carbon nanotubes as promising nanoscale single-photon emitters for hybrid quantum photonic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1105
Permanent link to this record