toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kroug, M.; Cherednichenko, S.; Merkel, H.; Kollberg, E.; Voronov, B.; Gol'tsman, G.; Hübers, H. W.; Richter, H. doi  openurl
  Title NbN hot electron bolometric mixers for terahertz receivers Type Journal Article
  Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal (up) IEEE Trans. Appl. Supercond.  
  Volume 11 Issue 1 Pages 962-965  
  Keywords NbN HEB mixers  
  Abstract Sensitivity and gain bandwidth measurements of phonon-cooled NbN superconducting hot-electron bolometer mixers are presented. The best receiver noise temperatures are: 700 K at 1.6 THz and 1100 K at 2.5 THz. Parylene as an antireflection coating on silicon has been investigated and used in the optics of the receiver. The dependence of the mixer gain bandwidth (GBW) on the bias voltage has been measured. Starting from low bias voltages, close to operating conditions yielding the lowest noise temperature, the GBW increases towards higher bias voltages, up to three times the initial value. The highest measured GBW is 9 GHz within the same bias range the noise temperature increases by a factor of two.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 312  
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Schubert, J.; Hubers, H.-W.; Schwaab, G.; Gol'tsman, G.; Gershenzon, E. url  doi
openurl 
  Title Heterodyne measurements of a NbN superconducting hot electron mixer at terahertz frequencies Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal (up) IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages 3757-3760  
  Keywords NbN HEB mixers  
  Abstract The performance of a NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixer is investigated in the 0.65-3.12 THz frequency range. The device is made from a 3 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are 0.2/spl times/2 /spl mu/m. The best results of the DSB noise temperature at 1.5 GHz IF frequency obtained with one device are: 1300 K at 650 GHz, 4700 K at 2.5 THz and 10000 K at 3.12 THz. The measurements were performed at 4.5 K ambient temperature. The amount of local oscillator (LO) power absorbed in the bolometer is about 100 nW. The mixer is linear to within 1 dB compression up to the signal level 10 dB below that of the LO. The intrinsic single sideband conversion gain measured at 650 GHz is -9 dB, the total conversion gain is -14 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1569  
Permanent link to this record
 

 
Author Kroug, M.; Yagoubov, P.; Gol'tsman, G.; Kollberg, E. url  openurl
  Title NbN quasioptical phonon cooled hot electron bolometric mixers at THz frequencies Type Conference Article
  Year 1997 Publication Inst. Phys. Conf. Ser. Abbreviated Journal (up) Inst. Phys. Conf. Ser.  
  Volume 1 Issue Pages 405-408  
  Keywords NbN HEB mixers  
  Abstract  
  Address Veldhoven  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0951-3248 ISBN Medium  
  Area Expedition Conference 3rd Eur. Conf. on Applied Superconductivity  
  Notes Approved no  
  Call Number Serial 1600  
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Schubert, J.; Hubers, H. W.; Svechnikov, S.; Voronov, B.; Gol'tsman, G.; Wang, Z. url  openurl
  Title Hot electron bolometric mixers based on NbN films deposited on MgO substrates Type Conference Article
  Year 1999 Publication Inst. Phys. Conf. Ser. Abbreviated Journal (up) Inst. Phys. Conf. Ser.  
  Volume 167 Issue Pages 687-690  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Barcelona, Spain Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 4th Europ. Conf. on Appl. Superconductivity, Inst. Phys. Conf. Ser.  
  Notes Approved no  
  Call Number Serial 297  
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Merkel, H.; Khosropanah, P.; Adam, A.; Kollberg, E.; Loudkov, D.; Gol'tsman, G.; Voronov, B.; Richter, H.; Huebers, H.-W. url  doi
openurl 
  Title 1.6 THz heterodyne receiver for the far infrared space telescope Type Journal Article
  Year 2002 Publication Phys. C: Supercond. Abbreviated Journal (up) Phys. C: Supercond.  
  Volume 372-376 Issue Pages 427-431  
  Keywords NbN HEB mixers, applications  
  Abstract A low noise heterodyne receiver is being developed for the terahertz range using a phonon-cooled hot-electron bolometric mixer based on 3.5 nm thick superconducting NbN film. In the 1–2 GHz intermediate frequency band the double-sideband receiver noise temperature was 450 K at 0.6 THz, 700 K at 1.6 THz and 1100 K at 2.5 THz. In the 3–8 GHz IF band the lowest receiver noise temperature was 700 K at 0.6 THz, 1500 K at 1.6 THz and 3000 K at 2.5 THz while it increased by a factor of 3 towards 8 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1527  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: