|   | 
Details
   web
Records
Author Elezov, M. S.; Ozhegov, R. V.; Kurochkin, Y. V.; Goltsman, G. N.; Makarov, V. S.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title Countermeasures against blinding attack on superconducting nanowire detectors for QKD Type Conference Article
Year 2015 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 103 Issue (up) Pages 10002 (1 to 2)
Keywords SSPD, SNSPD, QKD
Abstract Nowadays, the superconducting single-photon detectors (SSPDs) are used in Quantum Key Distribution (QKD) instead of single-photon avalanche photodiodes. Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing technique. We developed the autoreset system which returns the SSPD to superconducting state when it is latched. We investigate latched state of the SSPD and define limit conditions for effective blinding attack. Peculiarity of the blinding attack is a long nonsingle photon response of the SSPD. It is much longer than usual single photon response. Besides, we need follow up response duration of the SSPD. These countermeasures allow us to prevent blind attack on SSPDs for Quantum Key Distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1352
Permanent link to this record
 

 
Author Kurochkin, V. L.; Zverev, A. V.; Kurochkin, Y. V.; Ryabtsev, I. I.; Neizvestnyi, I. G.; Ozhegov, R. V.; Gol’tsman, G. N.; Larionov, P. A.
Title Long-distance fiber-optic quantum key distribution using superconducting detectors Type Conference Article
Year 2015 Publication Proc. Optoelectron. Instrum. Abbreviated Journal Proc. Optoelectron. Instrum.
Volume 51 Issue (up) 6 Pages 548-552
Keywords QKD, SSPD, SNSPD
Abstract This paper presents the results of experimental studies on quantum key distribution in optical fiber using superconducting detectors. Key generation was obtained on an experimental setup based on a self-compensation optical circuit with an optical fiber length of 101.1 km. It was first shown that photon polarization encoding can be used for quantum key distribution in optical fiber over a distance in excess of 300 km.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 8756-6990 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1342
Permanent link to this record