|   | 
Details
   web
Records
Author (up) Griffin, M. J.; Abergel, A.; Abreu, A.; Ade, P. A. R.; André, P.; Augueres, J.-L.; Babbedge, T.; Bae, Y.; Baillie, T.; Baluteau, J.-P.; Barlow, M. J.; Bendo, G.; Benielli, D.; Bock, J. J.; Bonhomme, P.; Brisbin, D.; Brockley-Blatt, C.; Caldwell, M.; Cara, C.; Castro-Rodriguez, N.; Cerulli, R.; Chanial, P.; Chen, S.; Clark, E.; Clements, D. L.; Clerc, L.; Coker, J.; Communal, D.; Conversi, L.; Cox, P.; Crumb, D.; Cunningham, C.; Daly, F.; Davis, G. R.; de Antoni, P.; Delderfield, J.; Devin, N.; di Giorgio, A.; Didschuns, I.; Dohlen, K.; Donati, M.; Dowell, A.; Dowell, C. D.; Duband, L.; Dumaye, L.; Emery, R. J.; Ferlet, M.; Ferrand, D.; Fontignie, J.; Fox, M.; Franceschini, A.; Frerking, M.; Fulton, T.; Garcia, J.; Gastaud, R.; Gear, W. K.; Glenn, J.; Goizel, A.; Griffin, D. K.; Grundy, T.; Guest, S.; Guillemet, L.; Hargrave, P. C.; Harwit, M.; Hastings, P.; Hatziminaoglou, E.; Herman, M.; Hinde, B.; Hristov, V.; Huang, M.; Imhof, P.; Isaak, K. J.; Israelsson, U.; Ivison, R. J.; Jennings, D.; Kiernan, B.; King, K. J.; Lange, A. E.; Latter, W.; Laurent, G.; Laurent, P.; Leeks, S. J.; Lellouch, E.; Levenson, L.; Li, B.; Li, J.; Lilienthal, J.; Lim, T.; Liu, S. J.; Lu, N.; Madden, S.; Mainetti, G.; Marliani, P.; McKay, D.; Mercier, K.; Molinari, S.; Morris, H.; Moseley, H.; Mulder, J.; Mur, M.; Naylor, D. A.; Nguyen, H.; O'Halloran, B.; Oliver, S.; Olofsson, G.; Olofsson, H.-G.; Orfei, R.; Page, M. J.; Pain, I.; Panuzzo, P.; Papageorgiou, A.; Parks, G.; Parr-Burman, P.; Pearce, A.; Pearson, C.; Pérez-Fournon, I.; Pinsard, F.; Pisano, G.; Podosek, J.; Pohlen, M.; Polehampton, E. T.; Pouliquen, D.; Rigopoulou, D.; Rizzo, D.; Roseboom, I. G.; Roussel, H.; Rowan-Robinson, M.; Rownd, B.; Saraceno, P.; Sauvage, M.; Savage, R.; Savini, G.; Sawyer, E.; Scharmberg, C.; Schmitt, D.; Schneider, N.; Schulz, B.; Schwartz, A.; Shafer, R.; Shupe, D. L.; Sibthorpe, B.; Sidher, S.; Smith, A.; Smith, A. J.; Smith, D.; Spencer, L.; Stobie, B.; Sudiwala, R.; Sukhatme, K.; Surace, C.; Stevens, J. A.; Swinyard, B. M.; Trichas, M.; Tourette, T.; Triou, H.; Tseng, S.; Tucker, C.; Turner, A.; Vaccari, M.; Valtchanov, I.; Vigroux, L.; Virique, E.; Voellmer, G.; Walker, H.; Ward, R.; Waskett, T.; Weilert, M.; Wesson, R.; White, G. J.; Whitehouse, N.; Wilson, C. D.; Winter, B.; Woodcraft, A. L.; Wright, G. S.; Xu, C. K.; Zavagno, A.; Zemcov, M.; Zhang, L.; Zonca, E.
Title The Herschel-SPIRE instrument and its in-flight performance Type Journal Article
Year 2010 Publication Astron. Astrophys. Abbreviated Journal A&A
Volume 518 Issue Pages 7
Keywords SPIRE
Abstract The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 μm (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4Â´× 8´, observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6´. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 695
Permanent link to this record
 

 
Author (up) Jiang, L.; Li, J.; Zhang, W.; Yao, Q. J.; Lin, Z. L.; Shi, S. C.; Vachtomin, Y. B.; Antipov, S. V.; Svechnikov, S. I.; Voronov, B. M.; Goltsman, G. N.
Title Characterization of NbN HEB mixers cooled by a close-cycled 4 Kelvin refrigerator Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 511-513
Keywords NbN HEB mixers
Abstract It is quite beneficial to operate superconducting hot-electron-bolometer (HEB) mixers with a close-cycled 4 Kelvin refrigerator for real applications such as astronomy and atmospheric research. In this paper, a phononcooled NbN HEB mixer (quasioptical type) is thoroughly characterized under such a cooling circumstance. The effects of mechanical vibration, electrical interference, and temperature fluctuation of a two-stage Gifford-McMahon 4 Kelvin refrigerator upon the characteristics of the phononcooled NbN HEB mixer are investigated in particular. Detailed measurement results are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1469
Permanent link to this record
 

 
Author (up) Jiang, L.; Zhang, W.; Yao, Q. J.; Lin, Z. H.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N.
Title Characterization of a quasi-optical NbN superconducting hot-electron bolometer mixer Type Conference Article
Year 2005 Publication Proc. PIERS Abbreviated Journal Proc. PIERS
Volume 1 Issue 5 Pages 587-590
Keywords NbN HEB mixers
Abstract In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolome-ter) mixer measured at 500 GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled bya 4-K close-cycled refrigerator. Its receiver noise temperature and conversion gain are thoroughly investigatedfor different LO pumping levels and dc biases. The lowest receiver noise temperature is found to be approxi-mately 1200 K, and reduced to about 445 K after correcting theloss of the measurement system. The stabilityof the mixer’s IF output power is also demonstrated.
Address Hangzhou, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-7360 ISBN Medium
Area Expedition Conference Progress In Electromagnetics Research Symposium
Notes Approved no
Call Number Serial 1482
Permanent link to this record
 

 
Author (up) Zhang, W.; Jiang, L.; Lin, Z. H.; Yao, Q. J.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Yu. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N.
Title Development of a quasi-optical NbN superconducting HEB mixer Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 209-213
Keywords NbN HEB mixers
Abstract In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolometer) mixer measured at 500 and 850GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled by a 4-K close-cycled refrigerator. Measured receiver noise temperature at 850 and 500GHz are 3000K and 2500K respectively with wire grid as beamsplitter, while the lowest receiver noise temperature is found to be approximately 1200K with Mylar film. The theoretical receiver noise temperature (taking into account the elliptical polarization of log-spiral antenna) is consistent with measured one. The receiver noise temperature and conversion gain with 15-μm Mylar film as the beamsplitter at 500GHz are thoroughly investigated for different LO pumping levels and dc biases. The stability of the mixer’s IF output power is also demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1470
Permanent link to this record