|   | 
Details
   web
Records
Author Baek, Burm; Lita, Adriana E.; Verma, Varun; Nam, Sae Woo
Title Superconducting a-WxSi1–x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm Type Journal Article
Year (up) 2011 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 98 Issue 25 Pages 3
Keywords SNSPD
Abstract We have developed a single-photon detector based on superconducting amorphous tungsten–silicon alloy (a-WxSi1–x) nanowire. Our device made from a uniform a-WxSi1–x nanowire covers a practical detection area (16 μm×16 μm) and shows high sensitivity featuring a plateau of the internal quantum efficiencies, i.e., efficiencies of generating an electrical pulse per absorbed photon, over a broad wavelength and bias range. This material system for superconducting nanowire detector technology could overcome the limitations of the prevalent nanowire devices based on NbN and lead to more practical, ideal single-photon detectors having high efficiency, low noise, and high count rates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 665
Permanent link to this record
 

 
Author Miller, Aaron J.; Lita, Adriana E.; Calkins, Brice; Vayshenker, Igor; Gruber, Steven M.; Nam, Sae Woo
Title Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent Type Journal Article
Year (up) 2011 Publication Optics Express Abbreviated Journal Opt. Express
Volume 19 Issue 10 Pages 9102-9110
Keywords TES
Abstract We present a compact packaging technique for coupling light from a single-mode telecommunication fiber to cryogenic single-photon sensitive devices. Our single-photon detectors are superconducting transition-edge sensors (TESs) with a collection area only a factor of a few larger than the area of the fiber core which presents significant challenges to low-loss fiber-to-detector coupling. The coupling method presented here has low loss, cryogenic compatibility, easy and reproducible assembly and low component cost. The system efficiency of the packaged single-photon counting detectors is verified by the “triplet method” of power-source calibration along with the “multiple attenuator” method that produces a calibrated single-photon flux. These calibration techniques, when used in combination with through-wafer imaging and fiber back-reflection measurements, give us confidence that we have achieved coupling losses below 1 % for all devices packaged according to the self-alignment method presented in this paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 666
Permanent link to this record