toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Feautrier, P.; le Coarer, E.; Espiau de Lamaestre, R.; Cavalier, P.; Maingault, L.; Villégier, J-C.; Frey, L.; Claudon, J.; Bergeard, N.; Tarkhov, M.; Poizat, J-P. openurl 
  Title High-speed superconducting single photon detectors for innovative astronomical applications Type Conference Article
  Year 2008 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 97 Issue 1 Pages 10  
  Keywords SSPD  
  Abstract Superconducting Single Photon Detectors (SSPD) are now mature enough to provide extremely interesting detector performances in term of sensitivity, speed, and geometry in the visible and near infrared wavelengths. Taking advantage of recent results obtained in the Sinphonia project, the goal of our research is to demonstrate the feasibility of a new family of micro-spectrometers, called SWIFTS (Stationary Wave Integrated Fourier Transform Spectrometer), associated to an array of SSPD, the whole assembly being integrated on a monolithic sapphire substrate coupling the detectors array to a waveguide injecting the light. This unique association will create a major breakthrough in the domain of visible and infrared spectroscopy for all applications where the space and weight of the instrument is limited. SWIFTS is an innovative way to achieve very compact spectro-detectors using nano-detectors coupled to evanescent field of dielectric integrated optics. The system is sensitive to the interferogram inside the dielectric waveguide along the propagation path. Astronomical instruments will be the first application of such SSPD spectrometers. In this paper, we describes in details the fabrication process of our SSPD built at CEA/DRFMC using ultra-thin NbN epitaxial films deposited on different orientations of Sapphire substrates having state of the art superconducting characteristics. Electron beam lithography is routinely used for patterning the devices having line widths below 200 nm and down to 70 nm. An experimental set-up has been built and used to test these SSPD devices and evaluate their photon counting performances. Photon counting performances of our devices have been demonstrated with extremely low dark counts giving excellent signal to noise ratios. The extreme compactness of this concept is interesting for space spectroscopic applications. Some new astronomical applications of such concept are proposed in this paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 648  
Permanent link to this record
 

 
Author (up) Maingault, L.; Tarkhov, M.; Florya, I.; Semenov, A.; Espiau de Lamaëstre, R.; Cavalier, P.; Gol’tsman, G.; Poizat, J.-P.; Villégier, J.-C. url  doi
openurl 
  Title Spectral dependency of superconducting single photon detectors Type Journal Article
  Year 2010 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 107 Issue 11 Pages 116103 (1 to 3)  
  Keywords NbN SSPD, SNSPD  
  Abstract We investigate the effect of varying both incoming optical wavelength and width of NbN nanowires on the superconducting single photon detectors (SSPD) detection efficiency. The SSPD are current biased close to critical value and temperature fixed at 4.2 K, far from transition. The experimental results are found to verify with a good accuracy predictions based on the “hot spot model,” whose size scales with the absorbed photon energy. With larger optical power inducing multiphoton detection regime, the same scaling law remains valid, up to the three-photon regime. We demonstrate the validity of applying a limited number of measurements and using such a simple model to reasonably predict any SSPD behavior among a collection of nanowire device widths at different photon wavelengths. These results set the basis for designing efficient single photon detectors operating in the infrared (2–5 μm range).

This work was supported by European projects FP6 STREP “SINPHONIA” (Contract No. NMP4-CT-2005-16433) and IP “QAP” (Contract No. 15848).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1392  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: