|   | 
Details
   web
Records
Author Shcherbatenko, M.; Elezov, M.; Manova, N.; Sedykh, K.; Korneev, A.; Korneeva, Y.; Dryazgov, M.; Simonov, N.; Feimov, A.; Goltsman, G.; Sych, D.
Title Single-pixel camera with a large-area microstrip superconducting single photon detector on a multimode fiber Type Journal Article
Year 2021 Publication (up) Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 118 Issue 18 Pages 181103
Keywords NbN SSPD, SNSPD
Abstract High sensitivity imaging at the level of single photons is an invaluable tool in many areas, ranging from microscopy to astronomy. However, development of single-photon sensitive detectors with high spatial resolution is very non-trivial. Here we employ the single-pixel imaging approach and demonstrate a proof-of-principle single-pixel single-photon imaging setup. We overcome the problem of low light gathering efficiency by developing a large-area microstrip superconducting single photon detector coupled to a multi-mode optical fiber interface. We show that the setup operates well in the visible and near infrared spectrum, and is able to capture images at the single-photon level.

We thank Philipp Zolotov and Pavel Morozov for NbN film fabrication, ARC coating, and fiber coupling of the detector. We also thank Swabian Instruments GmbH and Dr. Helmut Fedder personally for the kindly provided experimental equipment (Time Tagger Ultra 8). The work in the part of SNSPD research and development was supported by the Russian Foundation for Basic Research Project No. 18-29-20100. The work in the part of the optical setup and imaging was supported by Russian Foundation for Basic Research Project No. 20-32-51004.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1770
Permanent link to this record
 

 
Author Korneeva, Y.; Vodolazov, D.; Florya, I.; Manova, N.; Smirnov, E.; Korneev, A.; Mikhailov, M.; Goltsman, G.; Klapwijk, T. M.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Single photon detection in micron scale NbN and α-MoSi superconducting strips Type Conference Article
Year 2018 Publication (up) EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 190 Issue Pages 04010 (1 to 2)
Keywords SSPD
Abstract We experimentally demonstrate the single photon detection in straight micrometer-wide NbN and α-MoSi bridges. Width of the bridges is 2 µm, while the wavelength of the photon changes from 408 to 1550 nm and critical current exceeds 50% of the depairing current. Obtained results offer the alternative route for design of detectors without resonator and meander structure and indirectly confirm vortex assisted mechanism of single photon detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1319
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Manova, N.; Larionov, P.; Divochiy, A.; Semenov, A.; Chulkova, G.; Vachtomin, Y.; Smirnov, K.; Goltsman, G.
Title Recent nanowire superconducting single-photon detector optimization for practical applications Type Journal Article
Year 2013 Publication (up) IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 23 Issue 3 Pages 2201204 (1 to 4)
Keywords SSPD, SNSPD
Abstract In this paper, we present our approaches to the development of fiber-coupled superconducting single photon detectors with enhanced photon absorption. For such devices we have measured detection efficiency in wavelength range from 500 to 2000 nm. The best fiber coupled devices exhibit detection efficiency of 44.5% at 1310 nm wavelength and 35.5% at 1550 nm at 10 dark counts per second.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ KorneevIEEE2013 Serial 996
Permanent link to this record
 

 
Author Manova, N. N.; Smirnov, E. O.; Korneeva, Yu. P.; Korneev, A. A.; Goltsman, G. N.
Title Superconducting photon counter for nanophotonics applications Type Conference Article
Year 2019 Publication (up) J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1410 Issue Pages 012147 (1 to 5)
Keywords SSPD, SNSPD
Abstract We develop large area superconducting single-photon detector SSPD with a micron-wide strip suitable for free-space coupling or packaging with multi-mode optical fibres. The detector sensitive area is 20 μm in diameter. In near infrared (1330 nm wavelength) our SSPD exhibits above 30% detection efficiency with low dark counts and 45 ps timing jitter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1271
Permanent link to this record
 

 
Author Dryazgov, M.; Semenov, A.; Manova, N.; Korneeva, Y.; Korneev, A.
Title Modelling of normal domain evolution after single-photon absorption of a superconducting strip of micron width Type Conference Article
Year 2020 Publication (up) J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012195 (1 to 4)
Keywords SSPD modelling, SNSPD
Abstract The present paper describes a modelling of normal domain evolution in superconducting strip of micron width using solving differential equations describing the temperature and current changes. The solving results are compared with experimental data. This comparison demonstrates the high accuracy of the model. In future, it is possible to employ this model for improvement of single photon detector based on micron-scale superconducting strips.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1785
Permanent link to this record