toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ryabchun, S. A.; Tretyakov, I. V.; Pentin, I. V.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N. doi  openurl
  Title Low-noise wide-band hot-electron bolometer mixer based on an NbN film Type Journal Article
  Year 2009 Publication Radiophys. Quant. Electron. Abbreviated Journal  
  Volume 52 Issue 8 Pages (down) 576-582  
  Keywords HEB mixer, in-situ contacts, noise temperature, conversion gain bandwidth, diffusion cooling channel  
  Abstract We develop and study a hot-electron bolometer mixer made of a two-layer NbN–Au film in situ deposited on a silicon substrate. The double-sideband noise temperature of the mixer is 750 K at a frequency of 2.5 THz. The conversion efficiency measurements show that at the superconducting transition temperature, the intermediate-frequency bandwidth amounts to about 6.5 GHz for a mixer 0.112 μm long. These record-breaking characteristics are attributed to the improved contacts between a sensitive element and a helical antenna and are reached due to using the in situ deposition of NbN and Au layers at certain stages of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 599  
Permanent link to this record
 

 
Author Maslennikov, S. N.; Morozov, D. V.; Ozhegov, R. V.; Smirnov, K. V.; Okunev, O. V.; Gol’tsman, G. N. url  doi
openurl 
  Title Imaging system for submillimeter wave range based on AlGaAs/GaAs hot electron bolometer mixers Type Conference Article
  Year 2004 Publication Proc. 5-th MSMW Abbreviated Journal Proc. 5-th MSMW  
  Volume 2 Issue Pages (down) 558-560  
  Keywords AlGaAs/GaAs HEB mixers  
  Abstract Electromagnetic radiation of the submillimeter (SMM) range is dispersed and absorbed significantly less than infrared (IR) radiation when passing through different objects. That is the reason for the development of an SMM imaging system. In this paper, we discuss the design of an SMM heterodyne imager, based on a matrix of AlGaAs/GaAs heterostructure hot electron bolometer mixers (HEB) with relatively high (about 77 K) operating temperature. The predicted double side band (DSB) noise temperature is about 1000 K and optimal local oscillator (LO) power is about 1 /spl mu/W for such mixers, which seems to be quite prospective for an SMM heterodyne imager.  
  Address Kharkov, Ukraine  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828)  
  Notes Approved no  
  Call Number Serial 1487  
Permanent link to this record
 

 
Author Baryshev, A.; Baselmans, J. J. A.; Reker, S. F.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Vachtomin, Yu.; Maslennikov, S.; Antipov, S.; Voronov, B.; Gol'tsman, G. url  openurl
  Title Direct detection effect in hot electron bolometer mixers Type Abstract
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (down) 463-464  
  Keywords NbN HEB mixers, effect of direct detection, direct detection effect  
  Abstract NbN phonon cooled hot electron bolometer (HEB) mixers are currently the most sensitive heterodyne detectors at frequencies above 1.2 THz. They combine a good sensitivity (8-15 times the quantum limit), an IF bandwidth of the order of 4-6 GHz and a wide RF bandwidth from 0.7-5.2 THz. However, for use in a space based observatory, such as Herschel, it is of vital importance that the Local Oscillator (LO) power requirement of the mixer is compatible with the low output power of present day THz LO sources. This can be achieved by reducing the mixer volume and critical current. However, the large RF bandwidth and low LO power requirement of such a mixer result in a direct detection effect, characterized by a change in the bias current of the HEB when changing the RF signal from a black body load at 300 K to one at 77 K. As a result the measured sensitivity using a 300 K and 77 K calibration load differs significantly from the small signal sensitivity relevant for astronomical observations. In this article we describe a set of dedicated experiments to characterize the direct detection effect for a small volume quasi-optical NbN phonon cooled HEB mixer. We measure the direct detection effect in a small volume (0.15 μm · 1 μm · 3.5 nm) quasi- optical NbN phonon cooled HEB mixer at 1.6 THz. We found that the small signal sensitivity of the receiver is underestimated by approximately 35% due to the direct detection effect and that the optimal operating point is shifted to higher bias voltages when using calibration loads of 300 K and 77 K. Using a 200 GHz wide band-pass filter at the 4.2 K the direct detection effect virtually disappears. Heterodyne response measurements using water vapor absorption line in a gas cell confirms the existence and a magnitude of a direct detection effect. We also propose a theoretical explanation using uniform electron heating model. This direct detection effect has important implications for the calibration procedure of these receivers in real telescope systems. We are developing Nb HEBs for a large-format, diffusion-cooled hot electron bolometer (HEB) array submillimeter camera. The goal is to produce a 64 pixel array together with the University of Arizona to be used on the HHT on Mt Graham. It is designed to detect in the 850 GHz atmospheric window. We have fabricated Nb HEBs using a new angle- deposition process, which had previously produced high quality Nb-Au bilayer HEB devices at Yale. [1] We have characterized these devices using heterodyne mixing at ~30 GHz to compare to 345 GHz tests at the University of Arizona. We can also directly compare our Nb HEB mixers to SIS mixers in this same 345 GHz system. This allows us to rigorously calibrate the system’s losses and extract the mixer noise temperature in a well characterized mixer block, before undertaking the 850 GHz system. Here we give a report on the initial devices we have fabricated and characterized. * Department of Applied Physics, Yale University ** Department of Astronomy, University of Arizona [1] Applied Physics Letters 84, Number 8; p.1404-7, Feb 23 (2004)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1475  
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Yu. B.; Antipov, S. V.; Maslennikov, S. N.; Kaurova, N. S.; Drakinsky, V. N.; Voronov, B. M.; Gol'tsman, G. N.; Semenov, A. D.; Richter, H.; Hubers, H.-W. url  openurl
  Title Noise and gain performance of spiral antenna coupled HEB mixers at 0.7 THz and 2.5 THz Type Conference Article
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (down) 405-412  
  Keywords NbN HEB mixers  
  Abstract Noise and gain performance of hot electron bolometer (HEB) mixers based on ultrathin superconducting NbN films integrated with a spiral antenna was studied. The noise temperature measurements for two samples with different active area of 3 p.m x 0.24 .tni and 1.3 1..tm x 0.12 1.tm were performed at frequencies 0.7 THz and 2.5 THz. The best receiver noise temperatures 370 K and 1600 K, respectively, have been found at these frequencies. The influence of contact resistance between the superconductor and the antenna terminals on the noise temperature of HEB is discussed. The noise and gain bandwidth of 5GHz and 4.2 GHz, respectively, are demonstrated for similar HEB mixer at 0.75 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1502  
Permanent link to this record
 

 
Author Finkel, M. I.; Maslennikov, S. N.; Vachtomin, Yu. B.; Svechnikov, S. I.; Smirnov, K. V.; Seleznev, V. A.; Korotetskaya, Yu. P.; Kaurova, N. S.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title Hot electron bolometer mixer for 20 – 40 THz frequency range Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (down) 393-397  
  Keywords IR NbN HEB mixers  
  Abstract The developed HEB mixer was based on a 5 nm thick NbN film deposited on a GaAs substrate. The active area of the film was patterned as a 30×20 μm 2 strip and coupled with a 50 Ohm coplanar line deposited in situ. An extended hemispherical germanium lens was used to focus the LO radiation on the mixer. The responsivity of the mixer was measured in a direct detection mode in the 25÷64 THz frequency range. The noise performance of the mixer and the directivity of the receiver were investigated in a heterodyne mode. A 10.6 μm wavelength CW CO 2 laser was utilized as a local oscillator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Göteborg, Sweden Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 369  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: