|   | 
Details
   web
Records
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Goltsman, G. N.; Verevkin, A. A.; Toropov, A. I.; Mauskopf, P.
Title Concentration dependence of energy relaxation time in AlGaAs/GaAs heterojunctions: direct measurements Type Journal Article
Year 2011 Publication (down) Semicond. Sci. Technol. Abbreviated Journal Semicond. Sci. Technol.
Volume 26 Issue 2 Pages 025013
Keywords AlGaAs/GaAs heterojunctions
Abstract We present measurements of the energy relaxation time, τε, of electrons in a single heterojunction in a quasi-equilibrium state using microwave time-resolved spectroscopy at 4.2 K. We find the relaxation time has a power-law dependence on the carrier density of the two-dimensional electron gas, τε∝nγs with γ = 0.40 ± 0.02 for values of the carrier density, ns, from 1.6 × 1011 to 6.6 × 1011cm−2. The results are in good agreement with predictions taking into account the scattering of the carriers by both piezoelectric and deformation potential acoustic phonons. We compare these results with indirect measurements of the energy relaxation time from energy loss measurements involving Joule heating of the electron gas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-1242 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1215
Permanent link to this record
 

 
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol’tsman, G. N.; Verevkin, A. A.; Toropov, A. I.
Title Frequency bandwidth and conversion loss of a semiconductor heterodyne receiver with phonon cooling of two-dimensional electrons Type Journal Article
Year 2010 Publication (down) Semicond. Abbreviated Journal Semicond.
Volume 44 Issue 11 Pages 1427-1429
Keywords 2DEG, AlGaAs/GaAs heterostructures mixers
Abstract The temperature and concentration dependences of the frequency bandwidth of terahertz heterodyne AlGaAs/GaAs detectors based on hot electron phenomena with phonon cooling of two-dimensional electrons have been measured by submillimeter spectroscopy with a high time resolution. At a temperature of 4.2 K, the frequency bandwidth at a level of 3 dB (f 3 dB) is varied from 150 to 250 MHz with a change in the concentration n s according to the power law f 3dB ∝ n −0.5 s due to the dominant contribution of piezoelectric phonon scattering. The minimum conversion loss of the semiconductor heterodyne detector is obtained in structures with a high carrier mobility (μ > 3 × 105 cm2 V−1 s−1 at 4.2 K).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Полоса и потери преобразования полупроводникового смесителя с фононным каналом охлаждения двумерных электронов Approved no
Call Number Serial 1216
Permanent link to this record
 

 
Author Morozov, D. V.; Smirnov, K. V.; Smirnov, A. V.; Lyakhov, V. A.; Goltsman, G. N.
Title A millimeter-submillimeter phonon-cooled hot-electron bolometer mixer based on two-dimensional electron gas in an AlGaAs/GaAs heterostructure Type Journal Article
Year 2005 Publication (down) Semicond. Abbreviated Journal Semicond.
Volume 39 Issue 9 Pages 1082-1086
Keywords 2D electron gas, AlGaAs/GaAs heterostructures, mixers
Abstract Experimental results obtained by studying the main characteristics of a millimeter-submillimeter wave mixer based on the hot-electron effect in a two-dimensional electron gas in a AlGaAs/GaAs heterostructure with a phonon-scattering cooling mechanism for charge carriers are reported. The gain bandwidth of the mixer is 4 GHz, the internal conversion losses are 13 dB, and the optimum local-oscillator power is 0.5 μW (for a mixer area of 1 μm2). It is shown that a millimeter-submillimeter-wave receiver with a noise temperature of 1900 K can be developed on the basis of a AlGaAs/GaAs mixer. This mixer also appears to be promising for use in array receiver elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1463
Permanent link to this record
 

 
Author Ozhegov, R.; Maslennikov, S.; Morozov, D.; Okunev, O.; Smirnov, K.; Gol'tsman, G.
Title Imaging system for submillimeter wave range Type Conference Article
Year 2004 Publication (down) Proc. Tenth All-Russian sceintific conference of student-physicists and young sceintists (VNKSF-10) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Moscow Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ thzimaging_vnksf10_2004 Serial 347
Permanent link to this record
 

 
Author Okunev, O.; Chulkova, G.; Milostnaya, I.; Antipov, A.; Smirnov, K.; Morozov, D.; Korneev, A.; Voronov, B.; Gol’tsman, G.; Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Pearlman, A.; Cross, A.; Kitaygorsky, J.; Sobolewski, R.
Title Registration of infrared single photons by a two-channel receiver based on fiber-coupled superconducting single-photon detectors Type Conference Article
Year 2008 Publication (down) Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7009 Issue Pages 70090V (1 to 8)
Keywords SSPD, SNSPD, single-photon detectors, superconductors, superconducting nanost
Abstract Single-photon detectors (SPDs) are the foundation of all quantum communications (QC) protocols. Among different classes of SPDs currently studied, NbN superconducting SPDs (SSPDs) are established as the best devices for ultrafast counting of single photons in the infrared (IR) wavelength range. The SSPDs are nanostructured, 100 μm2 in total area, superconducting meanders, patterned by electron lithography in ultra-thin NbN films. Their operation has been explained within a phenomenological hot-electron photoresponse model. We present the design and performance of a novel, two-channel SPD receiver, based on two fiber-coupled NbN SSPDs. The receivers have been developed for fiber-based QC systems, operational at 1.3 μm and 1.55 μm telecommunication wavelengths. They operate in the temperature range from 4.2 K to 2 K, in which the NbN SSPDs exhibit their best performance. The receiver unit has been designed as a cryostat insert, placed inside a standard liquid-heliumstorage dewar. The input of the receiver consists of a pair of single-mode optical fibers, equipped with the standard FC connectors and kept at room temperature. Coupling between the SSPD and the fiber is achieved using a specially designed, precise micromechanical holder that places the fiber directly on top of the SSPD nanostructure. Our receivers achieve the quantum efficiency of up to 7% for near-IR photons, with the coupling efficiency of about 30%. The response time was measured to be < 1.5 ns and it was limited by our read-out electronics. The jitter of fiber-coupled SSPDs is < 35 ps and their dark-count rate is below 1s-1. The presented performance parameters show that our single-photon receivers are fully applicable for quantum correlation-type QC systems, including practical quantum cryptography.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Sukhoivanov, I.A.; Svich, V.A.; Shmaliy, Y.S.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1413
Permanent link to this record