|   | 
Details
   web
Records
Author Fedorov, G.; Gayduchenko, I.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G.
Title Graphene-based lateral Schottky diodes for detecting terahertz radiation Type Conference Article
Year 2018 Publication Proc. Optical Sensing and Detection V Abbreviated Journal Proc. Optical Sensing and Detection V
Volume (down) 10680 Issue Pages 30-39
Keywords graphene, terahertz radiation, detectors, Schottky diodes, carbon nanotubes, plasma waves
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of graphene field effect transistors of two configurations. The devices of the first type are based on single layer CVD graphene with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes (LSD). The devices of the second type are made in so-called Dyakonov-Shur configuration in which the radiation is coupled through a spiral antenna to source and top electrodes. We show that at 300 K the LSD detector exhibit the room-temperature responsivity from R = 15 V/W at f= 129 GHz to R = 3 V/W at f = 450 GHz. The DS detector responsivity is markedly lower (2 V/W) and practically frequency independent in the investigated range. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Berghmans, F.; Mignani, A.G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1117/12.2307020 Serial 1306
Permanent link to this record
 

 
Author Titova, N.; Gayduchenko, I. A.; Moskotin, M. V.; Fedorov, G. F.; Goltsman, G. N.
Title Carbon nanotube based terahertz radiation detectors Type Conference Article
Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume (down) 1410 Issue Pages 012208 (1 to 5)
Keywords carbon nanotubes, CNT
Abstract In this paper, we study terahertz detectors based on single quasimetallic carbon nanotubes (CNT) with asymmetric contacts and different metal pairs. We demonstrate that, depending on the contact metallization of the device, various detection mechanisms are manifested.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1270
Permanent link to this record
 

 
Author Matyushkin, Y. E.; Gayduchenko, I. A.; Moskotin, M. V.; Goltsman, G. N.; Fedorov, G. E.; Rybin, M. G.; Obraztsova, E. D.
Title Graphene-layer and graphene-nanoribbon FETs as THz detectors Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume (down) 1124 Issue Pages 051054
Keywords field-effect transistor, FET, monolayer graphene, graphene nanoribbons
Abstract We report on detection of sub-THz radiation (129-430 GHz) using graphene based asymmetric field-effect transistor (FET) structures with different channel geometry: monolayer graphene, graphene nanoribbons. In all devices types we observed the similar trends of response on sub-THz radiation. The response fell with increasing frequency at room temperature, but increased with increasing frequency at 77 K. Our calculations show that the change in the trend of the frequency dependence at 77 K is associated with the appearance of plasma waves in the graphene channel. Unusual properties of p-n junctions in graphene are highlighted using devices of special geometry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1300
Permanent link to this record
 

 
Author Moskotin, M. V.; Gayduchenko, I. A.; Goltsman, G. N.; Titova, N.; Voronov, B. M.; Fedorov, G. F.; Pyatkov, F.; Hennrich, F.
Title Bolometric effect for detection of sub-THz radiation with devices based on carbon nanotubes Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume (down) 1124 Issue Pages 051050 (1 to 5)
Keywords field-effect transistor, FET, carbon nanotube, CNT
Abstract In this work we investigate the response on THz radiation of a FET device based on an individual carbon nanotube conductance channel. It was already shown, that the response of such devices can be either of diode rectification origin or of thermoelectric effect origin or of their combination. In this work we demonstrate that at 77K and 8K temperatures strong bolometric effect also makes a significant contribution to the response.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1301
Permanent link to this record
 

 
Author Gayduchenko, I.; Fedorov, G.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G.
Title Towards to the development of THz detectors based on carbon nanostructures Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume (down) 1092 Issue Pages 012039 (1 to 4)
Keywords CVD graphene, carbon nanotubes, CNT, field effect transistors, FET, THz detectors
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of detectors with sensor elements based on CVD graphene as well as its derivatives – carbon nanotubes (CNTs). The devices are made in configuration of field effect transistors (FET) with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes. We show that at 300K semiconducting CNTs show better performance up to 300GHz with responsivity up to 100V/W, while quasi-metallic CNTs are shown to operate up to 2.5THz. At 300 K graphene detector exhibit the room-temperature responsivity from R = 15 V/W at f = 129 GHz to R = 3 V/W at f = 450 GHz. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1302
Permanent link to this record