toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Baek, Burm; Lita, Adriana E.; Verma, Varun; Nam, Sae Woo openurl 
  Title Superconducting a-WxSi1–x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm Type Journal Article
  Year 2011 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 98 Issue 25 Pages 3  
  Keywords SNSPD  
  Abstract We have developed a single-photon detector based on superconducting amorphous tungsten–silicon alloy (a-WxSi1–x) nanowire. Our device made from a uniform a-WxSi1–x nanowire covers a practical detection area (16 μm×16 μm) and shows high sensitivity featuring a plateau of the internal quantum efficiencies, i.e., efficiencies of generating an electrical pulse per absorbed photon, over a broad wavelength and bias range. This material system for superconducting nanowire detector technology could overcome the limitations of the prevalent nanowire devices based on NbN and lead to more practical, ideal single-photon detectors having high efficiency, low noise, and high count rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 665  
Permanent link to this record
 

 
Author (up) Hadfield, Robert. H.; Habif, Jonathan L.; Schlafer, John; Schwall, Robert. E.; Nam, Sae Woo url  doi
openurl 
  Title Quantum key distribution at 1550 nm with twin superconducting single-photon detectors Type Journal Article
  Year 2006 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 89 Issue 24 Pages 241129  
  Keywords SSPD, quantum cryptography  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 533  
Permanent link to this record
 

 
Author (up) Miller, Aaron J.; Lita, Adriana E.; Calkins, Brice; Vayshenker, Igor; Gruber, Steven M.; Nam, Sae Woo openurl 
  Title Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent Type Journal Article
  Year 2011 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 19 Issue 10 Pages 9102-9110  
  Keywords TES  
  Abstract We present a compact packaging technique for coupling light from a single-mode telecommunication fiber to cryogenic single-photon sensitive devices. Our single-photon detectors are superconducting transition-edge sensors (TESs) with a collection area only a factor of a few larger than the area of the fiber core which presents significant challenges to low-loss fiber-to-detector coupling. The coupling method presented here has low loss, cryogenic compatibility, easy and reproducible assembly and low component cost. The system efficiency of the packaged single-photon counting detectors is verified by the “triplet method” of power-source calibration along with the “multiple attenuator” method that produces a calibrated single-photon flux. These calibration techniques, when used in combination with through-wafer imaging and fiber back-reflection measurements, give us confidence that we have achieved coupling losses below 1 % for all devices packaged according to the self-alignment method presented in this paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 666  
Permanent link to this record
 

 
Author (up) Smith, Devin H.; Gillett, Geoff; de Almeida, Marcelo P.; Branciard, Cyril; Fedrizzi, Alessandro; Weinhold, Till J.; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Wiseman, Howard M.; Nam, Sae Woo; White, Andrew G. openurl 
  Title Conclusive quantum steering with superconducting transition-edge sensors Type Journal Article
  Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 3 Issue 625 Pages 6  
  Keywords fromIPMRAS  
  Abstract Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date, all experimental tests with single-photon states have relied on post selection, allowing untrusted devices to cheat by hiding unfavourable events in losses. Here we close this 'detection loophole' by combining a highly efficient source of entangled photon pairs with superconducting transition-edge sensors. We achieve an unprecedented ~62% conditional detection efficiency of entangled photons and violate a steering inequality with the minimal number of measurement settings by 48 s.d.s. Our results provide a clear path to practical applications of steering and to a photonic loophole-free Bell test.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 768  
Permanent link to this record
 

 
Author (up) Stevens, Martin J.; Baek, Burm; Dauler, Eric A.; Kerman, Andrew J.; Molnar, Richard J.; Hamilton, Scott A.; Berggren, Karl K.; Mirin, Richard P.; Nam, Sae Woo openurl 
  Title High-order temporal coherences of
chaotic and laser light Type Journal Article
  Year 2010 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 18 Issue 2 Pages 1430-1437  
  Keywords SNSPD  
  Abstract We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector. The four independent, interleaved single-photon-sensitive elements parse a single spatial mode of an optical beam over dimensions smaller than the minimum diffraction-limited spot size. Integrating this device with four-channel time-tagging electronics to generate multi-start, multi-stop histograms enables measurement of temporal coherences up to fourth order for a continuous range of all associated time delays. We observe high-order photon bunching from a chaotic, pseudo-thermal light source, measuring maximum third- and fourth-order coherence values of 5.87 ± 0.17 and 23.1 ± 1.8, respectively, in agreement with the theoretically predicted values of 3! = 6 and 4! = 24. Laser light, by contrast, is confirmed to have coherence values of approximately 1 for second, third and fourth orders at all time delays.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 685  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: