|   | 
Details
   web
Records
Author (up) Fedorov, G. E.; Gaiduchenko, I. A.; Golikov, A. D.; Rybin, M. G.; Obraztsova, E. D.; Voronov, B. M.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title Response of graphene based gated nanodevices exposed to THz radiation Type Conference Article
Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences
Volume 103 Issue Pages 10003 (1 to 2)
Keywords graphene field-effect transistor, FET
Abstract In this work we report on the response of asymmetric graphene based devices to subterahertz and terahertz radiation. Our devices are made in a configuration of a field-effect transistor with conduction channel between the source and drain electrodes formed with a CVD-grown graphene. The radiation is coupled through a spiral antenna to source and top gate electrodes. Room temperature responsivity of our devices is close to the values that are attractive for commercial applications. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1350
Permanent link to this record
 

 
Author (up) Gayduchenko, I. A.; Fedorov, G. E.; Moskotin, M. V.; Yagodkin, D. I.; Seliverstov, S. V.; Goltsman, G. N.; Yu Kuntsevich, A.; Rybin, M. G.; Obraztsova, E. D.; Leiman, V. G.; Shur, M. S.; Otsuji, T.; Ryzhii, V. I.
Title Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices Type Journal Article
Year 2018 Publication Nanotechnol. Abbreviated Journal Nanotechnol.
Volume 29 Issue 24 Pages 245204 (1 to 8)
Keywords single layer graphene, graphene nanoribbons
Abstract We report on the sub-terahertz (THz) (129-450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.
Address Physics Department, Moscow State University of Education, Moscow 119991, Russia. National Research Center 'Kurchatov Institute', 123182, Moscow, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Medium
Area Expedition Conference
Notes PMID:29553479 Approved no
Call Number Serial 1308
Permanent link to this record
 

 
Author (up) Gayduchenko, I. A.; Moskotin, M. V.; Matyushkin, Y. E.; Rybin, M. G.; Obraztsova, E. D.; Ryzhii, V. I.; Goltsman, G. N.; Fedorov, G. E.
Title The detection of sub-terahertz radiation using graphene-layer and graphene-nanoribbon FETs with asymmetric contacts Type Conference Article
Year 2018 Publication Materials Today: Proc. Abbreviated Journal Materials Today: Proc.
Volume 5 Issue 13 Pages 27301-27306
Keywords graphene nanoribbons, graphene-nanoribbon, GNR FET, field effect transistor
Abstract We report on the detection of sub-terahertz radiation using single layer graphene and graphene-nanoribbon FETs with asymmetric contacts (one is the Schottky contact and one – the Ohmic contact). We found that cutting graphene into ribbons a hundred nanometers wide leads to a decrease of the response to sub-THz radiation. We show that suppression of the response in the graphene nanoribbons devices can be explained by unusual properties of the Schottky barrier on graphene-vanadium interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-7853 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1316
Permanent link to this record
 

 
Author (up) Matyushkin, Y. E.; Gayduchenko, I. A.; Moskotin, M. V.; Goltsman, G. N.; Fedorov, G. E.; Rybin, M. G.; Obraztsova, E. D.
Title Graphene-layer and graphene-nanoribbon FETs as THz detectors Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051054
Keywords field-effect transistor, FET, monolayer graphene, graphene nanoribbons
Abstract We report on detection of sub-THz radiation (129-430 GHz) using graphene based asymmetric field-effect transistor (FET) structures with different channel geometry: monolayer graphene, graphene nanoribbons. In all devices types we observed the similar trends of response on sub-THz radiation. The response fell with increasing frequency at room temperature, but increased with increasing frequency at 77 K. Our calculations show that the change in the trend of the frequency dependence at 77 K is associated with the appearance of plasma waves in the graphene channel. Unusual properties of p-n junctions in graphene are highlighted using devices of special geometry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1300
Permanent link to this record
 

 
Author (up) Matyushkin, Y.; Danilov, S.; Moskotin, M.; Belosevich, V.; Kaurova, N.; Rybin, M.; Obraztsova, E. D.; Fedorov, G.; Gorbenko, I.; Kachorovskii, V.; Ganichev, S.
Title Helicity-sensitive plasmonic terahertz interferometer Type Journal Article
Year 2020 Publication Nano Lett. Abbreviated Journal Nano Lett.
Volume 20 Issue 10 Pages 7296-7303
Keywords graphene, plasmonic interferometer, radiation helicity, terahertz radiation
Abstract Plasmonic interferometry is a rapidly growing area of research with a huge potential for applications in the terahertz frequency range. In this Letter, we explore a plasmonic interferometer based on graphene field effect transistor connected to specially designed antennas. As a key result, we observe helicity- and phase-sensitive conversion of circularly polarized radiation into dc photovoltage caused by the plasmon-interference mechanism: two plasma waves, excited at the source and drain part of the transistor, interfere inside the channel. The helicity-sensitive phase shift between these waves is achieved by using an asymmetric antenna configuration. The dc signal changes sign with inversion of the helicity. A suggested plasmonic interferometer is capable of measuring the phase difference between two arbitrary phase-shifted optical signals. The observed effect opens a wide avenue for phase-sensitive probing of plasma wave excitations in two-dimensional materials.
Address CENTERA Laboratories, Institute of High Pressure Physics, PAS, 01-142 Warsaw, Poland
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Medium
Area Expedition Conference
Notes PMID:32903004 Approved no
Call Number Serial 1781
Permanent link to this record