|   | 
Author Emelianov, A. V.; Nekrasov, N. P.; Moskotin, M. V.; Fedorov, G. E.; Otero, N.; Romero, P. M.; Nevolin, V. K.; Afinogenov, B. I.; Nasibulin, A. G.; Bobrinetskiy, I. I.
Title Individual SWCNT transistor with photosensitive planar junction induced by two‐photon oxidation Type Journal Article
Year 2021 Publication (up) Adv. Electron. Mater. Abbreviated Journal Adv. Electron. Mater.
Volume 7 Issue 3 Pages 2000872
Keywords SWCNT transistors
Abstract The fabrication of planar junctions in carbon nanomaterials is a promising way to increase the optical sensitivity of optoelectronic nanometer-scale devices in photonic connections, sensors, and photovoltaics. Utilizing a unique lithography approach based on direct femtosecond laser processing, a fast and easy technique for modification of single-walled carbon nanotube (SWCNT) optoelectronic properties through localized two-photon oxidation is developed. It results in a novel approach of quasimetallic to semiconducting nanotube conversion so that metal/semiconductor planar junction is formed via local laser patterning. The fabricated planar junction in the field-effect transistors based on individual SWCNT drastically increases the photoresponse of such devices. The broadband photoresponsivity of the two-photon oxidized structures reaches the value of 2 × 107 A W−1 per single SWCNT at 1 V bias voltage. The SWCNT-based transistors with induced metal/semiconductor planar junction can be applied to detect extremely small light intensities with high spatial resolution in photovoltaics, integrated circuits, and telecommunication applications.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-160X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1843
Permanent link to this record