|   | 
Details
   web
Records
Author Ozhegov, R. V.; Gorshkov, K. N.; Gol'tsman, G. N.; Kinev, N. V.; Koshelets, V. P.
Title (up) The stability of a terahertz receiver based on a superconducting integrated receiver Type Journal Article
Year 2011 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 24 Issue 3 Pages 035003
Keywords SIS mixer, SIR, stability
Abstract We present the results of stability testing of a terahertz radiometer based on a superconducting receiver with a SIS tunnel junction as the mixer and a flux-flow oscillator as the local oscillator. In the continuum mode, the receiver with a noise temperature of 95 K at 510 GHz measured over the intermediate frequency (IF) passband of 4-8 GHz offered a noise equivalent temperature difference of 10 ± 1 mK at an integration time of 1 s. We offer a method to significantly increase the integration time without the use of complex measurement equipment. The receiver observed a strong signal over a final detection bandwidth of 4 GHz and offered an Allan time of 5 s.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 705
Permanent link to this record
 

 
Author Ozhegov, R. V.; Smirnov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V.; Divochiy, A. V.; Goltsman, G. N.
Title (up) Ultrafast superconducting bolometer receivers for terahertz applications Type Abstract
Year 2009 Publication Proc. PIERS Abbreviated Journal Proc. PIERS
Volume Issue Pages 867
Keywords HEB
Abstract The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types of detectors and their use both in fundamental and applied studies. In this paper, we present the results of testing the terahertz HEB receiver systems based on ultrathin (∼ 4 nm) NbN and MoRe detectors with a response time of 50 ps and 1 ns, respectively. We have developed three types of devices which differ in the way a terahertz signal is coupled to the detector and cover the following ranges: 0.3–3 THz, 0.1–30 THz and 25–70 THz. In the case of the receiving system optimized for 0.3–3 THz, the sensitive element (a strip of asuperconductor with planar dimensions of 0.2μm (length) by 1.7μm (width)) was integrated witha planar broadband log-spiral antenna. For additional focusing ofthe incident radiation a silicon hyperhemispherical lens was used. For the 0.1–30 THz receivingsystem, the sensitive element was patterned as parallel strips(2μm wide each) filling an area of 500×500μm2with a filling factor of 0.5. In the receivingsystem of this type we used direct coupling of the incident radiation to the sensitive element. Inthe 25–70 THz range (detector type 2/2a in Table 1) we used a square-shaped superconductingdetector with planar dimensions of 10×10μm2. Incident radiation was coupled to the detectorwith the use of a germanium hyperhemispherical lens.The response time of the above receiving systems is determined by the cooling rate of the hotelectrons in the film. That depends on the electron-phonon interaction time, which is less forultrathin NbN than in MoRe.
Address Moscow, Russia
Corporate Author Thesis
Publisher The Electromagnetics Academy Place of Publication 777 Concord Avenue, Suite 207 Cambridge, MA 02138 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1559-9450 ISBN 978-1-934142-09-7 Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ ozhegovultrafast Serial 1022
Permanent link to this record