toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Rubtsova, I.; Korneev, A.; Matvienko, V.; Chulkova, G.; Milostnaya, I.; Goltsman, G.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Spectral sensitivity, quantum efficiency, and noise equivalent power of NbN superconducting single-photon detectors in the IR range Type Conference Article
  Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal Proc. 29th IRMMW / 12th THz  
  Volume Issue Pages 461-462  
  Keywords NbN SSPD, SNSPD  
  Abstract We have developed nanostructured NbN superconducting single-photon detectors capable of GHz-rate photon counting in the 0.4 to 5 /spl mu/m wavelength range. Quantum efficiency of 30%, dark count rate 3/spl times/10/sup -4/ s/sup -1/, and NEP=10/sup -20/ W/Hz/sup -1/2/ have been measured at the 1.3-/spl mu/m wavelength for the device operating at 2.0 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1507  
Permanent link to this record
 

 
Author (up) Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Latta, C.; Zwiller, V.; Pearlman, A.; Cross, A.; Korneev, A.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Verevkin, A.; Currie, M.; Sobolewski, R. url  doi
openurl 
  Title Fiber-coupled quantum-communications receiver based on two NbN superconducting single-photon detectors Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5957 Issue Pages 59571K (1 to 10)  
  Keywords SSPD, SNSPD, single-photon detectors, quantum communication, quantum cryptography, superconductors, infrared optical detectors  
  Abstract We present the design and performance of a novel, two-channel single-photon receiver, based on two fiber-coupled NbN superconducting single-photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders covering an area of 100 μm2 and are known for ultrafast and efficient counting of single, visible-to-infrared photons. Their operation has been explained within a phenomenological hot-electron photoresponse model. Our receiver is intended for fiber-based quantum cryptography and communication systems, operational at near-infrared (NIR) telecommunication wavelengths, λ = 1.3 μm and λ = 1.55 μm. Coupling between the NbN detector and a single-mode optical fiber was achieved using a specially designed, micromechanical photoresist ring, positioned directly over the SSPD active area. The positioning accuracy of the ring was below 1 μm. The receiver with SSPDs was placed (immersed) in a standard liquid-helium transport Dewar and kept without interruption for over two months at 4.2 K. At the same time, the optical fiber inputs and electrical outputs were kept at room temperature. Our best system reached a system quantum efficiency of up to 0.3 % in the NIR radiation range, with the detector coupling efficiency of about 30 %. The response time was measured to be about 250 ps and was limited by our read-out electronics. The measured jitter was close to 35 ps. The presented performance parameters show that our NIR single photon detectors are suitable for practical quantum cryptography and for applications in quantum-correlation experiments.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Rogalski, A.; Dereniak, E.L.; Sizov, F.F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Infrared Photoelectronics  
  Notes Approved no  
  Call Number Serial 1459  
Permanent link to this record
 

 
Author (up) Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Rieger, E.; Dorenbos, P.; Zwiller, V.; Milostnaya, I.; Minaeva, O.; Antipov, A.; Okunev, O.; Korneev, A.; Smirnov, K.; Voronov, B.; Kaurova, N.; Gol’tsman, G.N.; Kitaygorsky, J.; Pan, D.; Pearlman, A.; Cross, A.; Komissarov, I.; Sobolewski, R. url  doi
openurl 
  Title Fiber-coupled NbN superconducting single-photon detectors for quantum correlation measurements Type Conference Article
  Year 2007 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 6583 Issue Pages 65830J (1 to 11)  
  Keywords NbN SSPD, SNSPD, superconducting single-photon detectors, single-photon detectors, fiber-coupled optical detectors, quantum correlations, superconducting devices  
  Abstract We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype experiments. The SSPDs are nanostructured ( 100-nm wide and 4-nm thick) NbN superconducting meandering stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast and efficient detection of visible to nearinfrared photons with almost negligible dark counts. Our latest devices are pigtailed structures with coupling between the SSPD structure and a single-mode optical fiber achieved using a micromechanical photoresist ring placed directly over the meander. The above arrangement withstands repetitive thermal cycling between liquid helium and room temperature, and we can reach the coupling efficiency of up to  33%. The system quantum efficiency, measured as the ratio of the photons counted by SSPD to the total number of photons coupled into the fiber, in our early devices was found to be around 0.3 % and 1% for 1.55 &mgr;m and 0.9 &mgr;m photon wavelengths, respectively. The photon counting rate exceeded 250 MHz. The receiver with two SSPDs, each individually biased, was placed inside a transport, 60-liter liquid helium Dewar, assuring uninterrupted operation for over 2 months. Since the receiver’s optical and electrical connections are at room temperature, the set-up is suitable for any applications, where single-photon counting capability and fast count rates are desired. In our case, it was implemented for photon correlation experiments. The receiver response time, measured as a second-order photon cross-correlation function, was found to be below 400 ps, with timing jitter of less than 40 ps.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Dusek, M.; Hillery, M.S.; Schleich, W.P.; Prochazka, I.; Migdall, A.L.; Pauchard, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Photon Counting Applications, Quantum Optics, and Quantum Cryptography  
  Notes Approved no  
  Call Number Serial 1431  
Permanent link to this record
 

 
Author (up) Sobolewski, R.; Zhang, J.; Slysz, W.; Pearlman, A.; Verevkin, A.; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Drakinsky, V.; Goltsman, G. N. url  doi
openurl 
  Title Ultrafast superconducting single-photon optical detectors Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5123 Issue Pages 1-11  
  Keywords NbN SSPD, SNSPD  
  Abstract We present a new class of single-photon devices for counting of both visible and infrared photons. Our superconducting single-photon detectors (SSPDs) are characterized by the intrinsic quantum efficiency (QE) reaching up to 100%, above 10 GHz counting rate, and negligible dark counts. The detection mechanism is based on the photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconducting stripe. The devices are fabricated from 3.5-nm-thick NbN films and operate at 4.2 K, well below the NbN superconducting transition temperature. Various continuous and pulsed laser sources in the wavelength range from 0.4 μm up to >3 μm were implemented in our experiments, enabling us to determine the detector QE in the photon-counting mode, response time, and jitter. For our best 3.5-nm-thick, 10×10 μm2-area devices, QE was found to reach almost 100% for any wavelength shorter than about 800 nm. For longer-wavelength (infrared) radiation, QE decreased exponentially with the photon wavelength increase. Time-resolved measurements of our SSPDs showed that the system-limited detector response pulse width was below 150 ps. The system jitter was measured to be 35 ps. In terms of the counting rate, jitter, and dark counts, the NbN SSPDs significantly outperform their semiconductor counterparts. Already identifeid and implemented applications of our devices range from noninvasive testing of semiconductor VLSI circuits to free-space quantum communications and quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Spigulis, J.; Teteris, J.; Ozolinsh, M.; Lusis, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Advanced Optical Devices, Technologies, and Medical Applications  
  Notes Approved no  
  Call Number Serial 1513  
Permanent link to this record
 

 
Author (up) Słysz, W.; Węgrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Bohi, P.; Milostnaya, I.; Minaeva, O.; Antipov, A.; Okunev, O.; Korneev, A.; Smirnov, K.; Voronov, B.; Kaurova, N.; Gol’tsman, G.; Pearlman, A.; Cross, A.; Komissarov, I.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Fiber-coupled single-photon detectors based on NbN superconducting nanostructures for practical quantum cryptography and photon-correlation studies Type Journal Article
  Year 2006 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 88 Issue 26 Pages 261113 (1 to 3)  
  Keywords SSPD, SNSPD  
  Abstract We have fabricated and tested a two-channel single-photon detector system based on two fiber-coupled superconducting single-photon detectors (SSPDs). Our best device reached the system quantum efficiency of 0.3% in the 1540-nm telecommunication wavelength with a fiber-to-detector coupling factor of about 30%. The photoresponse consisted of 2.5-ns-wide voltage pulses with a rise time of 250ps and timing jitter below 40ps. The overall system response time, measured as a second-order, photon cross-correlation function, was below 400ps. Our SSPDs operate at 4.2K inside a liquid-helium Dewar, but their optical fiber inputs and electrical outputs are at room temperature. Our two-channel detector system should find applications in practical quantum cryptography and in antibunching-type quantum correlation measurements.

The authors would like to thank Dr. Marc Currie for his assistance in early time-resolved photoresponse measurements and Professor Atac Imamoglu for his support. This work was supported by the Polish Ministry of Science under Project No. 3 T11B 052 26 (Warsaw), RFBR 03-02-17697 and INTAS 03-51-4145 grants (Moscow), CRDF Grant No. RE2-2531-MO-03 (Moscow), RE2-2529-MO-03 (Moscow and Rochester), and US AFOSR FA9550-04-1-0123 (Rochester). Additional funding was provided by the grants from the MIT Lincoln Laboratory and BBN Technologies Corp.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1449  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: