toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Yang, J. K. W.; Dauler, E.; Ferri, A.; Pearlman, A.; Verevkin, A.; Gol’tsman, G.; Voronov, B.; Sobolewski, R.; Keicher, W. E.; Berggren, K. K. url  doi
openurl 
  Title Fabrication development for nanowire GHz-counting-rate single-photon detectors Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 626-630  
  Keywords NbN SSPD, SNSPD  
  Abstract We have developed a fabrication process for GHz-counting-rate, single-photon, high-detection-efficiency, NbN, nanowire detectors. We have demonstrated two processes for the device patterning, one based on the standard polymethylmethacrylate (PMMA) organic positive-tone electron-beam resist, and the other based on the newer hydrogen silsesquioxane (HSQ) negative-tone spin-on-glass resist. The HSQ-based process is simple and robust, providing high resolution and the prospect of high fill-factors. Initial testing results show superconductivity in the films, and suggest that the devices exhibit photosensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1466  
Permanent link to this record
 

 
Author (up) Zhang, J.; Boiadjieva, N.; Chulkova, G.; Deslandes, H.; Gol'tsman, G. N.; Korneev, A.; Kouminov, P.; Leibowitz, M.; Lo, W.; Malinsky, R.; Okunev, O.; Pearlman, A.; Slysz, W.; Smirnov, K.; Tsao, C.; Verevkin, A.; Voronov, B.; Wilsher, K.; Sobolewski, R. url  doi
openurl 
  Title Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors Type Journal Article
  Year 2003 Publication Electron. Lett. Abbreviated Journal Electron. Lett.  
  Volume 39 Issue 14 Pages 1086-1088  
  Keywords NbN SSPD, SNSPD, applications  
  Abstract The 3.5 nm thick-film, meander-structured NbN superconducting single-photon detectors have been implemented in the CMOS circuit-testing system based on the detection of near-infrared photon emission from switching transistors and have significantly improved the performance of the system. Photon emissions from both p- and n-MOS transistors have been observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-5194 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1512  
Permanent link to this record
 

 
Author (up) Zhang, J.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Lo, W.; Wilsher, K. url  openurl
  Title Infrared picosecond superconducting single-photon detectors for CMOS circuit testing Type Conference Article
  Year 2003 Publication CLEO/QELS Abbreviated Journal CLEO/QELS  
  Volume Issue Pages Cmv4  
  Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Electron beam lithography; Infrared detectors; Infrared radiation; Quantum efficiency; Single photon detectors; Superconductors  
  Abstract Novel, NbN superconducting single-photon detectors have been developed for ultrafast, high quantum efficiency detection of single quanta of infrared radiation. Our devices have been successfully implemented in a commercial VLSI CMOS circuit testing system.  
  Address  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference  
  Notes Approved no  
  Call Number Serial 1518  
Permanent link to this record
 

 
Author (up) Zhang, J.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R.; Wilsher, K.; Lo, W.; Okunev, O.; Korneev, A.; Kouminov, P.; Chulkova, G.; Gol’tsman, G. N. url  doi
openurl 
  Title A superconducting single-photon detector for CMOS IC probing Type Conference Article
  Year 2003 Publication Proc. 16-th LEOS Abbreviated Journal Proc. 16-th LEOS  
  Volume 2 Issue Pages 602-603  
  Keywords NbN SSPD, SNSPD  
  Abstract In this paper, a novel, time-resolved, NbN-based, superconducting single-photon detector (SSPD) has been developed for probing CMOS integrated circuits (ICs) using photon emission timing analysis (PETA).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003.  
  Notes Approved no  
  Call Number Serial 1510  
Permanent link to this record
 

 
Author (up) Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Chulkova, G.; Gol’tsman, G. N. url  doi
openurl 
  Title Time delay of resistive-state formation in superconducting stripes excited by single optical photons Type Journal Article
  Year 2003 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 67 Issue 13 Pages 132508 (1 to 4)  
  Keywords NbN SSPD, SNSPD  
  Abstract We have observed a 65(±5)-ps time delay in the onset of a resistive-state formation in 10-nm-thick, 130-nm-wide NbN superconducting stripes exposed to single photons. The delay in the photoresponse decreased to zero when the stripe was irradiated by multi-photon (classical) optical pulses. Our NbN structures were kept at 4.2 K, well below the material’s critical temperature, and were illuminated by 100-fs-wide optical pulses. The time-delay phenomenon has been explained within the framework of a model based on photon-induced generation of a hotspot in the superconducting stripe and subsequent, supercurrent-assisted, resistive-state formation across the entire stripe cross section. The measured time delays in both the single-photon and two-photon detection regimes agree well with theoretical predictions of the resistive-state dynamics in one-dimensional superconducting stripes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1519  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: