|   | 
Details
   web
Records
Author (up) Gol'tsman, G.; Maslennikov, S.; Finkel, M.; Antipov, S.; Kaurova, N.; Grishina, E.; Polyakov, S.; Vachtomin, Y.; Svechnikov, S.; Smirnov, K.; Voronov, B.
Title Nanostructured ultrathin NbN film as a terahertz hot-electron bolometer mixer Type Conference Article
Year 2006 Publication Proc. MRS Abbreviated Journal Proc. MRS
Volume 935 Issue Pages 210 (1 to 6)
Keywords NbN HEB mixers
Abstract Planar spiral antenna coupled and directly lens coupled NbN HEB mixer structures are studied. An additional MgO buffer layer between the superconducting film and Si substrate is introduced. The buffer layer enables us to increase the gain bandwidth of a HEB mixer due to better acoustic transparency. The gain bandwidth is widened as NbN film thickness decreases and amounts to 5.2 GHz. The noise temperature of antenna coupled mixer is 1300 and 3100 K at 2.5 and 3.8 THz respectively. The structure and composition of NbN films is investigated by X-ray diffraction spectroscopy methods. Noise performance degradation at LO frequencies more than 3 THz is due to the use of a planar antenna and signal loss in contacts between the antenna and the sensitive NbN bridge. The mixer is reconfigured for operation at higher frequencies in a manner that receiver’s noise temperature is only 2300 K (3 times of quantum limit) at LO frequency of 30 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-9172 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1440
Permanent link to this record
 

 
Author (up) Maslennikov, S. N.; Finkel, M. I.; Antipov, S. V.; Polyakov, S. L.; Zhang, W.; Ozhegov, R.; Vachtomin, Yu. B.; Svechnikov, S. I.; Smirnov, K. V.; Korotetskaya, Yu. P.; Kaurova, N. S.; Gol'tsman, G. N.; Voronov, B. M.
Title Spiral antenna coupled and directly coupled NbN HEB mixers in the frequency range from 1 to 70 THz Type Conference Article
Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 177-179
Keywords directly coupled NbN HEB mixers
Abstract We investigate both antenna coupled and directly coupled HEB mixers at several LO frequencies within the range of 2.5 THz to 70 THz. H20 (2.5+10.7 THz), and CO2 (30 THz) gas discharge lasers are used as the local oscillators. The noise temperature of antenna coupled mixers is measured at LO frequencies of 2.5 THz, 3.8 THz, and 30 THz. The results for both antenna coupled and directly coupled mixer types are compared. The devices with in—plane dimensions of 5x5 ,um 2 are pumped by LO radiation at 10.7 THz. The directly coupled HEB demonstrates nearly flat dependence of responsivity on frequency in the range of 25+64 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Paris, France Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 386
Permanent link to this record
 

 
Author (up) Vachtomin, Y. B.; Antipov, S. V.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Gol'tsman, G. N.
Title Noise temperature measurements of NbN phonon-cooled hot electron bolometer mixer at 2.5 and 3.8 THz Type Conference Article
Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 236-241
Keywords HEB mixer, NbN, direct detection effect
Abstract We present the results of noise temperature measurements of NbN phonon-cooled HEB mixers based on a 3.5 nm NbN film deposited on a high-resistivity Si substrate with a 200 nm – thick MgO buffer layer. The mixer element was integrated with a log-periodic spiral antenna. The noise temperature measurements were performed at 2.5 THz and at 3.8 THz local oscillator frequencies for the 3 µm x 0.2 µm active area devices. The best uncorrected receiver noise temperatures found for these frequencies are 1300 K and 3100 K, respectively. A water vapour discharge laser was used as the LO source. We also present the results of direct detection contribution to the measured Y-factor and of a possible error of noise temperature calculation. This error was more than 8% for the mixer with in-plane dimensions of 2.4 x 0.16 µm 2 at the optimal noise temperature point. The use of a mesh filter enabled us to avoid the effect of direct detection and decrease optical losses by 0.5 dB. The paper is concluded by the investigation results of the mixer polarization response. It was shown that the polarization can differ from the circular one at 3.8 THz by more than 2 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Northampton, Massachusetts, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 344
Permanent link to this record
 

 
Author (up) Vachtomin, Y. B.; Antipov, S. V.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Zhang, W.; Svechnikov, S. I.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Gol’tsman, G. N.
Title Quasioptical hot electron bolometer mixers based on thin NBN films for terahertz region Type Conference Article
Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology
Volume 2 Issue Pages 688-689
Keywords NbN HEB mixers
Abstract Presented in this paper are the performances of HEB mixers based on 2-3.5 nm thick NbN films integrated with log-periodic spiral antenna. Double side-band receiver noise temperature values are 1300 K and 3100 K at 2.5 THz and at 3.8 THz, respectively. Mixer gain bandwidth is 5.2 GHz. Local oscillator power is 1-3 muW for mixers with different active area
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1445
Permanent link to this record
 

 
Author (up) Vachtomin, Yu. B.; Antipov, S. V.; Kaurova, N. S.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Svechnikov, S. I.; Grishina, E. V.; Voronov, B. M.; Gol'tsman, G. N.
Title Noise temperature, gain bandwidth and local oscillator power of NbN phonon-cooled HEB mixer at terahertz frequenciess Type Conference Article
Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal Proc. 29th IRMMW / 12th THz
Volume Issue Pages 329-330
Keywords
Abstract We present the performances of HEB mixers based on 3.5 nm thick NbN film integrated with log-periodic spiral antenna. The double side-band receiver noise temperature values are 1300 K and 3100 K at 2.5 THz and at 3.8 THz, respectively. The gain bandwidth of the mixer is 4.2 GHz and the noise bandwidth is 5 GHz. The local oscillator power is 1-3 /spl mu/W for mixers with different active area.
Address Karlsruhe, Germany
Corporate Author Thesis
Publisher Place of Publication Karlsruhe, Germany Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ nt_ifb_lopow_qoheb_karlsruhe_2004 Serial 354
Permanent link to this record